L(s) = 1 | + 0.732·3-s − 5-s + 3.46·7-s − 2.46·9-s + 2.73·11-s + 13-s − 0.732·15-s + 7.46·17-s − 2.73·19-s + 2.53·21-s − 0.732·23-s + 25-s − 4·27-s + 9.46·29-s − 0.196·31-s + 2·33-s − 3.46·35-s + 0.732·39-s + 0.535·41-s − 7.26·43-s + 2.46·45-s + 4.53·47-s + 4.99·49-s + 5.46·51-s − 0.535·53-s − 2.73·55-s − 2·57-s + ⋯ |
L(s) = 1 | + 0.422·3-s − 0.447·5-s + 1.30·7-s − 0.821·9-s + 0.823·11-s + 0.277·13-s − 0.189·15-s + 1.81·17-s − 0.626·19-s + 0.553·21-s − 0.152·23-s + 0.200·25-s − 0.769·27-s + 1.75·29-s − 0.0352·31-s + 0.348·33-s − 0.585·35-s + 0.117·39-s + 0.0836·41-s − 1.10·43-s + 0.367·45-s + 0.661·47-s + 0.714·49-s + 0.765·51-s − 0.0736·53-s − 0.368·55-s − 0.264·57-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.763002430 |
L(21) |
≈ |
1.763002430 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 13 | 1−T |
good | 3 | 1−0.732T+3T2 |
| 7 | 1−3.46T+7T2 |
| 11 | 1−2.73T+11T2 |
| 17 | 1−7.46T+17T2 |
| 19 | 1+2.73T+19T2 |
| 23 | 1+0.732T+23T2 |
| 29 | 1−9.46T+29T2 |
| 31 | 1+0.196T+31T2 |
| 37 | 1+37T2 |
| 41 | 1−0.535T+41T2 |
| 43 | 1+7.26T+43T2 |
| 47 | 1−4.53T+47T2 |
| 53 | 1+0.535T+53T2 |
| 59 | 1−5.66T+59T2 |
| 61 | 1+12.3T+61T2 |
| 67 | 1+12.9T+67T2 |
| 71 | 1−9.26T+71T2 |
| 73 | 1+2.92T+73T2 |
| 79 | 1+6.53T+79T2 |
| 83 | 1+10.3T+83T2 |
| 89 | 1+12.9T+89T2 |
| 97 | 1−15.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97600575780112934316907505504, −10.02924581371377934703209868279, −8.793363143840068806807251551510, −8.274658006708178020450122064181, −7.53844637418609047564072990656, −6.23744849259013932365528684669, −5.16920999808620702659828679307, −4.09043065945765163757391542059, −2.95818306668519194005910648112, −1.38230213712586315015274173446,
1.38230213712586315015274173446, 2.95818306668519194005910648112, 4.09043065945765163757391542059, 5.16920999808620702659828679307, 6.23744849259013932365528684669, 7.53844637418609047564072990656, 8.274658006708178020450122064181, 8.793363143840068806807251551510, 10.02924581371377934703209868279, 10.97600575780112934316907505504