Properties

Label 2-520-1.1-c1-0-3
Degree $2$
Conductor $520$
Sign $1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.732·3-s − 5-s + 3.46·7-s − 2.46·9-s + 2.73·11-s + 13-s − 0.732·15-s + 7.46·17-s − 2.73·19-s + 2.53·21-s − 0.732·23-s + 25-s − 4·27-s + 9.46·29-s − 0.196·31-s + 2·33-s − 3.46·35-s + 0.732·39-s + 0.535·41-s − 7.26·43-s + 2.46·45-s + 4.53·47-s + 4.99·49-s + 5.46·51-s − 0.535·53-s − 2.73·55-s − 2·57-s + ⋯
L(s)  = 1  + 0.422·3-s − 0.447·5-s + 1.30·7-s − 0.821·9-s + 0.823·11-s + 0.277·13-s − 0.189·15-s + 1.81·17-s − 0.626·19-s + 0.553·21-s − 0.152·23-s + 0.200·25-s − 0.769·27-s + 1.75·29-s − 0.0352·31-s + 0.348·33-s − 0.585·35-s + 0.117·39-s + 0.0836·41-s − 1.10·43-s + 0.367·45-s + 0.661·47-s + 0.714·49-s + 0.765·51-s − 0.0736·53-s − 0.368·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.763002430\)
\(L(\frac12)\) \(\approx\) \(1.763002430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 - 0.732T + 3T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
11 \( 1 - 2.73T + 11T^{2} \)
17 \( 1 - 7.46T + 17T^{2} \)
19 \( 1 + 2.73T + 19T^{2} \)
23 \( 1 + 0.732T + 23T^{2} \)
29 \( 1 - 9.46T + 29T^{2} \)
31 \( 1 + 0.196T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 0.535T + 41T^{2} \)
43 \( 1 + 7.26T + 43T^{2} \)
47 \( 1 - 4.53T + 47T^{2} \)
53 \( 1 + 0.535T + 53T^{2} \)
59 \( 1 - 5.66T + 59T^{2} \)
61 \( 1 + 12.3T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 - 9.26T + 71T^{2} \)
73 \( 1 + 2.92T + 73T^{2} \)
79 \( 1 + 6.53T + 79T^{2} \)
83 \( 1 + 10.3T + 83T^{2} \)
89 \( 1 + 12.9T + 89T^{2} \)
97 \( 1 - 15.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.97600575780112934316907505504, −10.02924581371377934703209868279, −8.793363143840068806807251551510, −8.274658006708178020450122064181, −7.53844637418609047564072990656, −6.23744849259013932365528684669, −5.16920999808620702659828679307, −4.09043065945765163757391542059, −2.95818306668519194005910648112, −1.38230213712586315015274173446, 1.38230213712586315015274173446, 2.95818306668519194005910648112, 4.09043065945765163757391542059, 5.16920999808620702659828679307, 6.23744849259013932365528684669, 7.53844637418609047564072990656, 8.274658006708178020450122064181, 8.793363143840068806807251551510, 10.02924581371377934703209868279, 10.97600575780112934316907505504

Graph of the $Z$-function along the critical line