Properties

Label 2-520-1.1-c1-0-1
Degree $2$
Conductor $520$
Sign $1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44·3-s + 5-s + 2·7-s + 2.99·9-s − 4.44·11-s − 13-s − 2.44·15-s + 6.89·17-s + 0.449·19-s − 4.89·21-s + 6.44·23-s + 25-s + 4·29-s − 4.44·31-s + 10.8·33-s + 2·35-s + 4.89·37-s + 2.44·39-s + 10.8·41-s + 11.3·43-s + 2.99·45-s − 2·47-s − 3·49-s − 16.8·51-s + 1.10·53-s − 4.44·55-s − 1.10·57-s + ⋯
L(s)  = 1  − 1.41·3-s + 0.447·5-s + 0.755·7-s + 0.999·9-s − 1.34·11-s − 0.277·13-s − 0.632·15-s + 1.67·17-s + 0.103·19-s − 1.06·21-s + 1.34·23-s + 0.200·25-s + 0.742·29-s − 0.799·31-s + 1.89·33-s + 0.338·35-s + 0.805·37-s + 0.392·39-s + 1.70·41-s + 1.73·43-s + 0.447·45-s − 0.291·47-s − 0.428·49-s − 2.36·51-s + 0.151·53-s − 0.599·55-s − 0.145·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.002561067\)
\(L(\frac12)\) \(\approx\) \(1.002561067\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + 2.44T + 3T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 4.44T + 11T^{2} \)
17 \( 1 - 6.89T + 17T^{2} \)
19 \( 1 - 0.449T + 19T^{2} \)
23 \( 1 - 6.44T + 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 + 4.44T + 31T^{2} \)
37 \( 1 - 4.89T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 - 11.3T + 43T^{2} \)
47 \( 1 + 2T + 47T^{2} \)
53 \( 1 - 1.10T + 53T^{2} \)
59 \( 1 - 9.34T + 59T^{2} \)
61 \( 1 + 5.79T + 61T^{2} \)
67 \( 1 + 5.10T + 67T^{2} \)
71 \( 1 + 3.55T + 71T^{2} \)
73 \( 1 + 14.6T + 73T^{2} \)
79 \( 1 - 4.89T + 79T^{2} \)
83 \( 1 - 2T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 7.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81735829551496376384178067299, −10.35473728271326370463691662290, −9.297786020336508059903442128787, −7.949433548834261159646894082631, −7.24832421898336060270397296698, −5.90694615766181500994260288707, −5.38833856141713142480185624416, −4.62367180616311040522304514495, −2.77598347198424651725791736953, −1.01665628423807691467792718144, 1.01665628423807691467792718144, 2.77598347198424651725791736953, 4.62367180616311040522304514495, 5.38833856141713142480185624416, 5.90694615766181500994260288707, 7.24832421898336060270397296698, 7.949433548834261159646894082631, 9.297786020336508059903442128787, 10.35473728271326370463691662290, 10.81735829551496376384178067299

Graph of the $Z$-function along the critical line