L(s) = 1 | − 2.44·3-s + 5-s + 2·7-s + 2.99·9-s − 4.44·11-s − 13-s − 2.44·15-s + 6.89·17-s + 0.449·19-s − 4.89·21-s + 6.44·23-s + 25-s + 4·29-s − 4.44·31-s + 10.8·33-s + 2·35-s + 4.89·37-s + 2.44·39-s + 10.8·41-s + 11.3·43-s + 2.99·45-s − 2·47-s − 3·49-s − 16.8·51-s + 1.10·53-s − 4.44·55-s − 1.10·57-s + ⋯ |
L(s) = 1 | − 1.41·3-s + 0.447·5-s + 0.755·7-s + 0.999·9-s − 1.34·11-s − 0.277·13-s − 0.632·15-s + 1.67·17-s + 0.103·19-s − 1.06·21-s + 1.34·23-s + 0.200·25-s + 0.742·29-s − 0.799·31-s + 1.89·33-s + 0.338·35-s + 0.805·37-s + 0.392·39-s + 1.70·41-s + 1.73·43-s + 0.447·45-s − 0.291·47-s − 0.428·49-s − 2.36·51-s + 0.151·53-s − 0.599·55-s − 0.145·57-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.002561067 |
L(21) |
≈ |
1.002561067 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 13 | 1+T |
good | 3 | 1+2.44T+3T2 |
| 7 | 1−2T+7T2 |
| 11 | 1+4.44T+11T2 |
| 17 | 1−6.89T+17T2 |
| 19 | 1−0.449T+19T2 |
| 23 | 1−6.44T+23T2 |
| 29 | 1−4T+29T2 |
| 31 | 1+4.44T+31T2 |
| 37 | 1−4.89T+37T2 |
| 41 | 1−10.8T+41T2 |
| 43 | 1−11.3T+43T2 |
| 47 | 1+2T+47T2 |
| 53 | 1−1.10T+53T2 |
| 59 | 1−9.34T+59T2 |
| 61 | 1+5.79T+61T2 |
| 67 | 1+5.10T+67T2 |
| 71 | 1+3.55T+71T2 |
| 73 | 1+14.6T+73T2 |
| 79 | 1−4.89T+79T2 |
| 83 | 1−2T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1−7.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81735829551496376384178067299, −10.35473728271326370463691662290, −9.297786020336508059903442128787, −7.949433548834261159646894082631, −7.24832421898336060270397296698, −5.90694615766181500994260288707, −5.38833856141713142480185624416, −4.62367180616311040522304514495, −2.77598347198424651725791736953, −1.01665628423807691467792718144,
1.01665628423807691467792718144, 2.77598347198424651725791736953, 4.62367180616311040522304514495, 5.38833856141713142480185624416, 5.90694615766181500994260288707, 7.24832421898336060270397296698, 7.949433548834261159646894082631, 9.297786020336508059903442128787, 10.35473728271326370463691662290, 10.81735829551496376384178067299