L(s) = 1 | − 2.73·3-s − 5-s − 3.46·7-s + 4.46·9-s − 0.732·11-s + 13-s + 2.73·15-s + 0.535·17-s + 0.732·19-s + 9.46·21-s + 2.73·23-s + 25-s − 3.99·27-s + 2.53·29-s + 10.1·31-s + 2·33-s + 3.46·35-s − 2.73·39-s + 7.46·41-s − 10.7·43-s − 4.46·45-s + 11.4·47-s + 4.99·49-s − 1.46·51-s − 7.46·53-s + 0.732·55-s − 2·57-s + ⋯ |
L(s) = 1 | − 1.57·3-s − 0.447·5-s − 1.30·7-s + 1.48·9-s − 0.220·11-s + 0.277·13-s + 0.705·15-s + 0.129·17-s + 0.167·19-s + 2.06·21-s + 0.569·23-s + 0.200·25-s − 0.769·27-s + 0.470·29-s + 1.83·31-s + 0.348·33-s + 0.585·35-s − 0.437·39-s + 1.16·41-s − 1.63·43-s − 0.665·45-s + 1.67·47-s + 0.714·49-s − 0.205·51-s − 1.02·53-s + 0.0987·55-s − 0.264·57-s + ⋯ |
Λ(s)=(=(520s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(520s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5678070994 |
L(21) |
≈ |
0.5678070994 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 13 | 1−T |
good | 3 | 1+2.73T+3T2 |
| 7 | 1+3.46T+7T2 |
| 11 | 1+0.732T+11T2 |
| 17 | 1−0.535T+17T2 |
| 19 | 1−0.732T+19T2 |
| 23 | 1−2.73T+23T2 |
| 29 | 1−2.53T+29T2 |
| 31 | 1−10.1T+31T2 |
| 37 | 1+37T2 |
| 41 | 1−7.46T+41T2 |
| 43 | 1+10.7T+43T2 |
| 47 | 1−11.4T+47T2 |
| 53 | 1+7.46T+53T2 |
| 59 | 1+11.6T+59T2 |
| 61 | 1−8.39T+61T2 |
| 67 | 1−0.928T+67T2 |
| 71 | 1−12.7T+71T2 |
| 73 | 1−10.9T+73T2 |
| 79 | 1+13.4T+79T2 |
| 83 | 1−10.3T+83T2 |
| 89 | 1−0.928T+89T2 |
| 97 | 1+11.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90408677099640618740331508210, −10.20414253020792576095761356254, −9.368171480062089548096755888861, −8.060210896072692909797751119787, −6.83133973832531209909933199725, −6.34776039853551283174323004610, −5.37276639251637763627303023232, −4.34215244154987436195976911636, −3.04747144414217232239792058212, −0.72301461500310057444827065062,
0.72301461500310057444827065062, 3.04747144414217232239792058212, 4.34215244154987436195976911636, 5.37276639251637763627303023232, 6.34776039853551283174323004610, 6.83133973832531209909933199725, 8.060210896072692909797751119787, 9.368171480062089548096755888861, 10.20414253020792576095761356254, 10.90408677099640618740331508210