Properties

Label 2-520-1.1-c1-0-0
Degree $2$
Conductor $520$
Sign $1$
Analytic cond. $4.15222$
Root an. cond. $2.03769$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·3-s − 5-s − 3.46·7-s + 4.46·9-s − 0.732·11-s + 13-s + 2.73·15-s + 0.535·17-s + 0.732·19-s + 9.46·21-s + 2.73·23-s + 25-s − 3.99·27-s + 2.53·29-s + 10.1·31-s + 2·33-s + 3.46·35-s − 2.73·39-s + 7.46·41-s − 10.7·43-s − 4.46·45-s + 11.4·47-s + 4.99·49-s − 1.46·51-s − 7.46·53-s + 0.732·55-s − 2·57-s + ⋯
L(s)  = 1  − 1.57·3-s − 0.447·5-s − 1.30·7-s + 1.48·9-s − 0.220·11-s + 0.277·13-s + 0.705·15-s + 0.129·17-s + 0.167·19-s + 2.06·21-s + 0.569·23-s + 0.200·25-s − 0.769·27-s + 0.470·29-s + 1.83·31-s + 0.348·33-s + 0.585·35-s − 0.437·39-s + 1.16·41-s − 1.63·43-s − 0.665·45-s + 1.67·47-s + 0.714·49-s − 0.205·51-s − 1.02·53-s + 0.0987·55-s − 0.264·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(520\)    =    \(2^{3} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.15222\)
Root analytic conductor: \(2.03769\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5678070994\)
\(L(\frac12)\) \(\approx\) \(0.5678070994\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good3 \( 1 + 2.73T + 3T^{2} \)
7 \( 1 + 3.46T + 7T^{2} \)
11 \( 1 + 0.732T + 11T^{2} \)
17 \( 1 - 0.535T + 17T^{2} \)
19 \( 1 - 0.732T + 19T^{2} \)
23 \( 1 - 2.73T + 23T^{2} \)
29 \( 1 - 2.53T + 29T^{2} \)
31 \( 1 - 10.1T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 7.46T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 - 11.4T + 47T^{2} \)
53 \( 1 + 7.46T + 53T^{2} \)
59 \( 1 + 11.6T + 59T^{2} \)
61 \( 1 - 8.39T + 61T^{2} \)
67 \( 1 - 0.928T + 67T^{2} \)
71 \( 1 - 12.7T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 - 10.3T + 83T^{2} \)
89 \( 1 - 0.928T + 89T^{2} \)
97 \( 1 + 11.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90408677099640618740331508210, −10.20414253020792576095761356254, −9.368171480062089548096755888861, −8.060210896072692909797751119787, −6.83133973832531209909933199725, −6.34776039853551283174323004610, −5.37276639251637763627303023232, −4.34215244154987436195976911636, −3.04747144414217232239792058212, −0.72301461500310057444827065062, 0.72301461500310057444827065062, 3.04747144414217232239792058212, 4.34215244154987436195976911636, 5.37276639251637763627303023232, 6.34776039853551283174323004610, 6.83133973832531209909933199725, 8.060210896072692909797751119787, 9.368171480062089548096755888861, 10.20414253020792576095761356254, 10.90408677099640618740331508210

Graph of the $Z$-function along the critical line