Properties

Label 2-51520-1.1-c1-0-20
Degree $2$
Conductor $51520$
Sign $1$
Analytic cond. $411.389$
Root an. cond. $20.2827$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 7-s − 2·9-s + 3·11-s − 3·13-s − 15-s + 3·17-s − 21-s + 23-s + 25-s + 5·27-s + 9·29-s + 2·31-s − 3·33-s + 35-s + 4·37-s + 3·39-s + 4·41-s + 2·43-s − 2·45-s + 13·47-s + 49-s − 3·51-s + 2·53-s + 3·55-s + 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.377·7-s − 2/3·9-s + 0.904·11-s − 0.832·13-s − 0.258·15-s + 0.727·17-s − 0.218·21-s + 0.208·23-s + 1/5·25-s + 0.962·27-s + 1.67·29-s + 0.359·31-s − 0.522·33-s + 0.169·35-s + 0.657·37-s + 0.480·39-s + 0.624·41-s + 0.304·43-s − 0.298·45-s + 1.89·47-s + 1/7·49-s − 0.420·51-s + 0.274·53-s + 0.404·55-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51520\)    =    \(2^{6} \cdot 5 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(411.389\)
Root analytic conductor: \(20.2827\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51520,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.669064695\)
\(L(\frac12)\) \(\approx\) \(2.669064695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
23 \( 1 - T \)
good3 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 13 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44041912190354, −14.19147192115801, −13.55599424599438, −12.83935494792298, −12.28113881402940, −11.95764558304751, −11.45640693234486, −11.00191052251672, −10.22005916173901, −10.01521625306642, −9.321732654418923, −8.610969600203587, −8.447570009843260, −7.440445639328562, −7.137483633226479, −6.353694590938309, −5.902347907505197, −5.464660566601361, −4.718025476606102, −4.356437242292180, −3.442691280735218, −2.697112501464693, −2.225002416506506, −1.114858728788691, −0.7018454719089312, 0.7018454719089312, 1.114858728788691, 2.225002416506506, 2.697112501464693, 3.442691280735218, 4.356437242292180, 4.718025476606102, 5.464660566601361, 5.902347907505197, 6.353694590938309, 7.137483633226479, 7.440445639328562, 8.447570009843260, 8.610969600203587, 9.321732654418923, 10.01521625306642, 10.22005916173901, 11.00191052251672, 11.45640693234486, 11.95764558304751, 12.28113881402940, 12.83935494792298, 13.55599424599438, 14.19147192115801, 14.44041912190354

Graph of the $Z$-function along the critical line