L(s) = 1 | − 1.83·2-s + 1.37·4-s + (1.22 + 0.706i)5-s + (0.660 − 1.14i)7-s + 1.15·8-s + (−2.24 − 1.29i)10-s + (0.206 + 0.119i)11-s − 3.50i·13-s + (−1.21 + 2.09i)14-s − 4.86·16-s + (2.07 − 1.19i)17-s + (0.782 + 4.28i)19-s + (1.67 + 0.969i)20-s + (−0.380 − 0.219i)22-s + 3.19i·23-s + ⋯ |
L(s) = 1 | − 1.29·2-s + 0.686·4-s + (0.546 + 0.315i)5-s + (0.249 − 0.432i)7-s + 0.407·8-s + (−0.710 − 0.410i)10-s + (0.0623 + 0.0360i)11-s − 0.973i·13-s + (−0.324 + 0.561i)14-s − 1.21·16-s + (0.503 − 0.290i)17-s + (0.179 + 0.983i)19-s + (0.375 + 0.216i)20-s + (−0.0810 − 0.0467i)22-s + 0.665i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.929 + 0.369i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.804123 - 0.154171i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.804123 - 0.154171i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-0.782 - 4.28i)T \) |
good | 2 | \( 1 + 1.83T + 2T^{2} \) |
| 5 | \( 1 + (-1.22 - 0.706i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.660 + 1.14i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.206 - 0.119i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.50iT - 13T^{2} \) |
| 17 | \( 1 + (-2.07 + 1.19i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 - 3.19iT - 23T^{2} \) |
| 29 | \( 1 + (1.89 + 3.28i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-8.02 + 4.63i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.94iT - 37T^{2} \) |
| 41 | \( 1 + (-0.360 + 0.624i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 6.41T + 43T^{2} \) |
| 47 | \( 1 + (-8.12 + 4.69i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.726 + 1.25i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.44 + 7.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.98 - 3.44i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + 13.1iT - 67T^{2} \) |
| 71 | \( 1 + (1.40 + 2.42i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.08 - 10.5i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 5.99iT - 79T^{2} \) |
| 83 | \( 1 + (-10.4 - 6.02i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.686 - 1.18i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40348142925517161439686744450, −10.01371298542583612103205259687, −9.229921016327157395690324386559, −7.961760506294332540018091448777, −7.73171221723834735798182852469, −6.44342890532925033758432735740, −5.39353675963430860689721130889, −3.97503344855238793380700332625, −2.38479968765833709938643676513, −0.938670932447748719526798462640,
1.21051336989863332774453995570, 2.43967178543460386365861801679, 4.32154008580787147832664090137, 5.40633878259428867693857863371, 6.63699670803751470421470837745, 7.52006005783940274041414516382, 8.648471283485588291936639227398, 9.044197115064048954186810354435, 9.855661267268272545136672625566, 10.71162751773980651873826793047