L(s) = 1 | + (0.888 + 1.53i)2-s + (−0.580 + 1.00i)4-s + 1.27·5-s + (0.657 − 1.13i)7-s + 1.49·8-s + (1.13 + 1.97i)10-s + (0.130 − 0.225i)11-s + (0.933 − 1.61i)13-s + 2.33·14-s + (2.48 + 4.30i)16-s + (0.0508 − 0.0880i)17-s + (3.11 + 3.05i)19-s + (−0.742 + 1.28i)20-s + 0.462·22-s + (−0.611 + 1.05i)23-s + ⋯ |
L(s) = 1 | + (0.628 + 1.08i)2-s + (−0.290 + 0.502i)4-s + 0.572·5-s + (0.248 − 0.430i)7-s + 0.527·8-s + (0.359 + 0.623i)10-s + (0.0392 − 0.0679i)11-s + (0.259 − 0.448i)13-s + 0.625·14-s + (0.621 + 1.07i)16-s + (0.0123 − 0.0213i)17-s + (0.713 + 0.700i)19-s + (−0.166 + 0.287i)20-s + 0.0986·22-s + (−0.127 + 0.221i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.98797 + 1.28793i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.98797 + 1.28793i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-3.11 - 3.05i)T \) |
good | 2 | \( 1 + (-0.888 - 1.53i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 1.27T + 5T^{2} \) |
| 7 | \( 1 + (-0.657 + 1.13i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.130 + 0.225i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.933 + 1.61i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.0508 + 0.0880i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.611 - 1.05i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.52T + 29T^{2} \) |
| 31 | \( 1 + (0.617 + 1.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 8.59T + 37T^{2} \) |
| 41 | \( 1 + 8.21T + 41T^{2} \) |
| 43 | \( 1 + (1.53 + 2.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.58T + 47T^{2} \) |
| 53 | \( 1 + (-2.59 - 4.50i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 8.02T + 59T^{2} \) |
| 61 | \( 1 + 14.1T + 61T^{2} \) |
| 67 | \( 1 + (-0.390 + 0.677i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.19 + 14.1i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.397 - 0.687i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.82 + 10.0i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.03 + 5.25i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (5.75 + 9.96i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.83 - 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96083399625455292290041982521, −10.17504355183641106684442046508, −9.229274762424882108317847493726, −7.896457521815840566832917785766, −7.45788564602679377373839541669, −6.19951828815546076405363275473, −5.68745090114921877484042922015, −4.65464619799357487497331425665, −3.52377446725838405640356400171, −1.64436049141184164141193567479,
1.59682531701772062748393917904, 2.60512718286710339521633223747, 3.77896368330567547705447132279, 4.86880302327711774249536402315, 5.77924503723137404525115762644, 7.02403380984589795464992573845, 8.118453790166650484317709132345, 9.314747375686805082906753956302, 9.951432701597852631897692604890, 11.05234694777101582905992519787