L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.500 − 0.866i)4-s + 5-s + (−1.5 + 2.59i)7-s − 3·8-s + (−0.5 − 0.866i)10-s + (1.5 − 2.59i)11-s + (3 − 5.19i)13-s + 3·14-s + (0.500 + 0.866i)16-s + (1.5 − 2.59i)17-s + (−4 − 1.73i)19-s + (0.500 − 0.866i)20-s − 3·22-s + (4 − 6.92i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.250 − 0.433i)4-s + 0.447·5-s + (−0.566 + 0.981i)7-s − 1.06·8-s + (−0.158 − 0.273i)10-s + (0.452 − 0.783i)11-s + (0.832 − 1.44i)13-s + 0.801·14-s + (0.125 + 0.216i)16-s + (0.363 − 0.630i)17-s + (−0.917 − 0.397i)19-s + (0.111 − 0.193i)20-s − 0.639·22-s + (0.834 − 1.44i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.361 + 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.361 + 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.689256 - 1.00696i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.689256 - 1.00696i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (4 + 1.73i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - T + 5T^{2} \) |
| 7 | \( 1 + (1.5 - 2.59i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-3 + 5.19i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-4 + 6.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5T + 29T^{2} \) |
| 31 | \( 1 + (-3.5 - 6.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 - T + 41T^{2} \) |
| 43 | \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 9T + 47T^{2} \) |
| 53 | \( 1 + (-1.5 - 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 3T + 59T^{2} \) |
| 61 | \( 1 - 7T + 61T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.5 - 12.9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.5 + 4.33i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6 - 10.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53982779185925441555393422261, −9.914733318800735856680820690356, −8.849058922344088454146548866671, −8.443471412362247655743573755376, −6.59846699055009858271107852262, −6.06570041081805960450976585646, −5.17165467997458954996451952542, −3.24570181529285020852700786694, −2.50510013608551059842848175087, −0.837857107130942695788145712451,
1.75576313996937568804761698360, 3.47959918976036542031719361535, 4.33990420847873951360144415563, 6.13226787349324150529786119100, 6.58985942488832300076487238506, 7.45918675433093412309689321841, 8.396419621598843879061991890148, 9.422274484681160721014995885668, 9.977551879038831302476544619924, 11.22764068267892271213048943580