L(s) = 1 | + (0.0732 + 0.126i)2-s + (0.989 − 1.71i)4-s − 2.57·5-s + (−1.73 + 3.01i)7-s + 0.582·8-s + (−0.188 − 0.326i)10-s + (−2.07 + 3.60i)11-s + (−2.29 + 3.98i)13-s − 0.509·14-s + (−1.93 − 3.35i)16-s + (1.50 − 2.61i)17-s + (3.65 + 2.37i)19-s + (−2.54 + 4.40i)20-s − 0.609·22-s + (−2.45 + 4.25i)23-s + ⋯ |
L(s) = 1 | + (0.0518 + 0.0897i)2-s + (0.494 − 0.856i)4-s − 1.14·5-s + (−0.657 + 1.13i)7-s + 0.206·8-s + (−0.0595 − 0.103i)10-s + (−0.626 + 1.08i)11-s + (−0.637 + 1.10i)13-s − 0.136·14-s + (−0.483 − 0.838i)16-s + (0.365 − 0.633i)17-s + (0.838 + 0.544i)19-s + (−0.568 + 0.984i)20-s − 0.129·22-s + (−0.512 + 0.888i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.406 - 0.913i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.406 - 0.913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.387010 + 0.596056i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.387010 + 0.596056i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-3.65 - 2.37i)T \) |
good | 2 | \( 1 + (-0.0732 - 0.126i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 2.57T + 5T^{2} \) |
| 7 | \( 1 + (1.73 - 3.01i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.07 - 3.60i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.29 - 3.98i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.50 + 2.61i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (2.45 - 4.25i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 3.71T + 29T^{2} \) |
| 31 | \( 1 + (-3.31 - 5.75i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 5.28T + 37T^{2} \) |
| 41 | \( 1 + 2.53T + 41T^{2} \) |
| 43 | \( 1 + (2.39 + 4.14i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 9.71T + 47T^{2} \) |
| 53 | \( 1 + (5.35 + 9.27i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.96T + 59T^{2} \) |
| 61 | \( 1 - 0.944T + 61T^{2} \) |
| 67 | \( 1 + (0.688 - 1.19i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.45 - 7.71i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.14 - 3.71i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.69 + 2.93i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.52 - 7.83i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.96 - 6.86i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.930 + 1.61i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49825897018477953750325873523, −9.951062010889983798826200777014, −9.760974808928854724998080679187, −8.468159137518396929778904990423, −7.34104769459524212214254240939, −6.76974405707143230471414703478, −5.48801007405975382508481283802, −4.73774242476177270308422077556, −3.21485502434086615358556793596, −1.96073663121268421932193980409,
0.39181759952514337580384015666, 2.97902671435115695637783606498, 3.51476390346158394962534305265, 4.61365338458788735447845468130, 6.16205072284301815522148217448, 7.23349637788111752448569772951, 7.888942057256975272664753689198, 8.394340760952391803208628715886, 10.03129004797098762494797095966, 10.67943713152476113940607272722