Properties

Label 2-5100-1.1-c1-0-10
Degree $2$
Conductor $5100$
Sign $1$
Analytic cond. $40.7237$
Root an. cond. $6.38151$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4.57·7-s + 9-s + 3.11·11-s + 1.15·13-s − 17-s + 1.34·19-s − 4.57·21-s − 0.615·23-s + 27-s + 3.77·29-s + 2.80·31-s + 3.11·33-s − 11.4·37-s + 1.15·39-s − 0.427·41-s + 10.7·43-s − 10.1·47-s + 13.9·49-s − 51-s + 1.42·53-s + 1.34·57-s − 9.19·59-s + 7.57·61-s − 4.57·63-s + 9.19·67-s − 0.615·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.72·7-s + 0.333·9-s + 0.940·11-s + 0.320·13-s − 0.242·17-s + 0.309·19-s − 0.998·21-s − 0.128·23-s + 0.192·27-s + 0.700·29-s + 0.502·31-s + 0.543·33-s − 1.87·37-s + 0.184·39-s − 0.0668·41-s + 1.63·43-s − 1.47·47-s + 1.98·49-s − 0.140·51-s + 0.195·53-s + 0.178·57-s − 1.19·59-s + 0.970·61-s − 0.576·63-s + 1.12·67-s − 0.0741·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(40.7237\)
Root analytic conductor: \(6.38151\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.974131717\)
\(L(\frac12)\) \(\approx\) \(1.974131717\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + 4.57T + 7T^{2} \)
11 \( 1 - 3.11T + 11T^{2} \)
13 \( 1 - 1.15T + 13T^{2} \)
19 \( 1 - 1.34T + 19T^{2} \)
23 \( 1 + 0.615T + 23T^{2} \)
29 \( 1 - 3.77T + 29T^{2} \)
31 \( 1 - 2.80T + 31T^{2} \)
37 \( 1 + 11.4T + 37T^{2} \)
41 \( 1 + 0.427T + 41T^{2} \)
43 \( 1 - 10.7T + 43T^{2} \)
47 \( 1 + 10.1T + 47T^{2} \)
53 \( 1 - 1.42T + 53T^{2} \)
59 \( 1 + 9.19T + 59T^{2} \)
61 \( 1 - 7.57T + 61T^{2} \)
67 \( 1 - 9.19T + 67T^{2} \)
71 \( 1 - 2.30T + 71T^{2} \)
73 \( 1 - 0.417T + 73T^{2} \)
79 \( 1 - 7.60T + 79T^{2} \)
83 \( 1 - 13.6T + 83T^{2} \)
89 \( 1 - 1.56T + 89T^{2} \)
97 \( 1 - 5.84T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.363011039106929360921708886405, −7.43567317679658575903465051819, −6.55799967869670504738956384499, −6.45820352023750044464812002979, −5.37727874977186462291563137451, −4.29690314952078794500925341441, −3.54036640389071590656976336393, −3.06916405006634620629922921856, −2.00665185784694674208054197020, −0.73606792917685910740423461007, 0.73606792917685910740423461007, 2.00665185784694674208054197020, 3.06916405006634620629922921856, 3.54036640389071590656976336393, 4.29690314952078794500925341441, 5.37727874977186462291563137451, 6.45820352023750044464812002979, 6.55799967869670504738956384499, 7.43567317679658575903465051819, 8.363011039106929360921708886405

Graph of the $Z$-function along the critical line