L(s) = 1 | + 4.24·2-s − 3·3-s + 9.99·4-s + 19.9·5-s − 12.7·6-s − 20.9·7-s + 8.48·8-s + 9·9-s + 84.7·10-s + 16.0·11-s − 29.9·12-s − 34.9·13-s − 88.9·14-s − 59.9·15-s − 44.0·16-s − 17·17-s + 38.1·18-s − 80.8·19-s + 199.·20-s + 62.9·21-s + 68.0·22-s − 115.·23-s − 25.4·24-s + 273.·25-s − 148.·26-s − 27·27-s − 209.·28-s + ⋯ |
L(s) = 1 | + 1.49·2-s − 0.577·3-s + 1.24·4-s + 1.78·5-s − 0.866·6-s − 1.13·7-s + 0.374·8-s + 0.333·9-s + 2.67·10-s + 0.439·11-s − 0.721·12-s − 0.745·13-s − 1.69·14-s − 1.03·15-s − 0.687·16-s − 0.242·17-s + 0.500·18-s − 0.976·19-s + 2.23·20-s + 0.653·21-s + 0.659·22-s − 1.05·23-s − 0.216·24-s + 2.19·25-s − 1.11·26-s − 0.192·27-s − 1.41·28-s + ⋯ |
Λ(s)=(=(51s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(51s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.636758209 |
L(21) |
≈ |
2.636758209 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 17 | 1+17T |
good | 2 | 1−4.24T+8T2 |
| 5 | 1−19.9T+125T2 |
| 7 | 1+20.9T+343T2 |
| 11 | 1−16.0T+1.33e3T2 |
| 13 | 1+34.9T+2.19e3T2 |
| 19 | 1+80.8T+6.85e3T2 |
| 23 | 1+115.T+1.21e4T2 |
| 29 | 1−154.T+2.43e4T2 |
| 31 | 1−299.T+2.97e4T2 |
| 37 | 1−315.T+5.06e4T2 |
| 41 | 1−132.T+6.89e4T2 |
| 43 | 1+23.1T+7.95e4T2 |
| 47 | 1−260.T+1.03e5T2 |
| 53 | 1+676.T+1.48e5T2 |
| 59 | 1−629.T+2.05e5T2 |
| 61 | 1+461.T+2.26e5T2 |
| 67 | 1+789.T+3.00e5T2 |
| 71 | 1+686.T+3.57e5T2 |
| 73 | 1−484.T+3.89e5T2 |
| 79 | 1−254T+4.93e5T2 |
| 83 | 1−548.T+5.71e5T2 |
| 89 | 1−925.T+7.04e5T2 |
| 97 | 1−732.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.62362983344960776055261691856, −13.68222288785837112621247610811, −12.93585579326445167328565546576, −12.06647203562279580501175738999, −10.35686539836264492321707011189, −9.408194808190971945735719944340, −6.42113878209371864504508109495, −6.11885099356846956181751603264, −4.61604693073622875217041840227, −2.55702699647835084381266876097,
2.55702699647835084381266876097, 4.61604693073622875217041840227, 6.11885099356846956181751603264, 6.42113878209371864504508109495, 9.408194808190971945735719944340, 10.35686539836264492321707011189, 12.06647203562279580501175738999, 12.93585579326445167328565546576, 13.68222288785837112621247610811, 14.62362983344960776055261691856