Properties

Label 2-51-1.1-c3-0-4
Degree $2$
Conductor $51$
Sign $1$
Analytic cond. $3.00909$
Root an. cond. $1.73467$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.24·2-s − 3·3-s + 9.99·4-s + 19.9·5-s − 12.7·6-s − 20.9·7-s + 8.48·8-s + 9·9-s + 84.7·10-s + 16.0·11-s − 29.9·12-s − 34.9·13-s − 88.9·14-s − 59.9·15-s − 44.0·16-s − 17·17-s + 38.1·18-s − 80.8·19-s + 199.·20-s + 62.9·21-s + 68.0·22-s − 115.·23-s − 25.4·24-s + 273.·25-s − 148.·26-s − 27·27-s − 209.·28-s + ⋯
L(s)  = 1  + 1.49·2-s − 0.577·3-s + 1.24·4-s + 1.78·5-s − 0.866·6-s − 1.13·7-s + 0.374·8-s + 0.333·9-s + 2.67·10-s + 0.439·11-s − 0.721·12-s − 0.745·13-s − 1.69·14-s − 1.03·15-s − 0.687·16-s − 0.242·17-s + 0.500·18-s − 0.976·19-s + 2.23·20-s + 0.653·21-s + 0.659·22-s − 1.05·23-s − 0.216·24-s + 2.19·25-s − 1.11·26-s − 0.192·27-s − 1.41·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $1$
Analytic conductor: \(3.00909\)
Root analytic conductor: \(1.73467\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.636758209\)
\(L(\frac12)\) \(\approx\) \(2.636758209\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
17 \( 1 + 17T \)
good2 \( 1 - 4.24T + 8T^{2} \)
5 \( 1 - 19.9T + 125T^{2} \)
7 \( 1 + 20.9T + 343T^{2} \)
11 \( 1 - 16.0T + 1.33e3T^{2} \)
13 \( 1 + 34.9T + 2.19e3T^{2} \)
19 \( 1 + 80.8T + 6.85e3T^{2} \)
23 \( 1 + 115.T + 1.21e4T^{2} \)
29 \( 1 - 154.T + 2.43e4T^{2} \)
31 \( 1 - 299.T + 2.97e4T^{2} \)
37 \( 1 - 315.T + 5.06e4T^{2} \)
41 \( 1 - 132.T + 6.89e4T^{2} \)
43 \( 1 + 23.1T + 7.95e4T^{2} \)
47 \( 1 - 260.T + 1.03e5T^{2} \)
53 \( 1 + 676.T + 1.48e5T^{2} \)
59 \( 1 - 629.T + 2.05e5T^{2} \)
61 \( 1 + 461.T + 2.26e5T^{2} \)
67 \( 1 + 789.T + 3.00e5T^{2} \)
71 \( 1 + 686.T + 3.57e5T^{2} \)
73 \( 1 - 484.T + 3.89e5T^{2} \)
79 \( 1 - 254T + 4.93e5T^{2} \)
83 \( 1 - 548.T + 5.71e5T^{2} \)
89 \( 1 - 925.T + 7.04e5T^{2} \)
97 \( 1 - 732.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62362983344960776055261691856, −13.68222288785837112621247610811, −12.93585579326445167328565546576, −12.06647203562279580501175738999, −10.35686539836264492321707011189, −9.408194808190971945735719944340, −6.42113878209371864504508109495, −6.11885099356846956181751603264, −4.61604693073622875217041840227, −2.55702699647835084381266876097, 2.55702699647835084381266876097, 4.61604693073622875217041840227, 6.11885099356846956181751603264, 6.42113878209371864504508109495, 9.408194808190971945735719944340, 10.35686539836264492321707011189, 12.06647203562279580501175738999, 12.93585579326445167328565546576, 13.68222288785837112621247610811, 14.62362983344960776055261691856

Graph of the $Z$-function along the critical line