Properties

Label 2-5096-1.1-c1-0-111
Degree $2$
Conductor $5096$
Sign $-1$
Analytic cond. $40.6917$
Root an. cond. $6.37900$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·3-s − 1.82·5-s + 2.92·9-s + 3.78·11-s − 13-s − 4.44·15-s − 7.71·17-s − 1.44·19-s − 2.02·23-s − 1.66·25-s − 0.193·27-s − 0.611·29-s − 7.15·31-s + 9.19·33-s + 7.66·37-s − 2.43·39-s − 8.67·41-s − 2.13·43-s − 5.33·45-s + 4.69·47-s − 18.7·51-s + 5.24·53-s − 6.90·55-s − 3.50·57-s − 3.11·59-s + 10.2·61-s + 1.82·65-s + ⋯
L(s)  = 1  + 1.40·3-s − 0.816·5-s + 0.973·9-s + 1.13·11-s − 0.277·13-s − 1.14·15-s − 1.87·17-s − 0.330·19-s − 0.421·23-s − 0.332·25-s − 0.0372·27-s − 0.113·29-s − 1.28·31-s + 1.60·33-s + 1.25·37-s − 0.389·39-s − 1.35·41-s − 0.325·43-s − 0.795·45-s + 0.684·47-s − 2.62·51-s + 0.720·53-s − 0.931·55-s − 0.464·57-s − 0.406·59-s + 1.31·61-s + 0.226·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5096\)    =    \(2^{3} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(40.6917\)
Root analytic conductor: \(6.37900\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5096,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2.43T + 3T^{2} \)
5 \( 1 + 1.82T + 5T^{2} \)
11 \( 1 - 3.78T + 11T^{2} \)
17 \( 1 + 7.71T + 17T^{2} \)
19 \( 1 + 1.44T + 19T^{2} \)
23 \( 1 + 2.02T + 23T^{2} \)
29 \( 1 + 0.611T + 29T^{2} \)
31 \( 1 + 7.15T + 31T^{2} \)
37 \( 1 - 7.66T + 37T^{2} \)
41 \( 1 + 8.67T + 41T^{2} \)
43 \( 1 + 2.13T + 43T^{2} \)
47 \( 1 - 4.69T + 47T^{2} \)
53 \( 1 - 5.24T + 53T^{2} \)
59 \( 1 + 3.11T + 59T^{2} \)
61 \( 1 - 10.2T + 61T^{2} \)
67 \( 1 + 10.0T + 67T^{2} \)
71 \( 1 + 3.66T + 71T^{2} \)
73 \( 1 + 14.9T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 1.02T + 83T^{2} \)
89 \( 1 - 6.82T + 89T^{2} \)
97 \( 1 + 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.944914536426736263169900480939, −7.27769711072157340635311958051, −6.71219181988982744694515316125, −5.77480537487970355806809065468, −4.42388193336453212038589362937, −4.10231724367333174950511097515, −3.36717297686132964228398428076, −2.41173961402802904388961503936, −1.68036904676329825622704562893, 0, 1.68036904676329825622704562893, 2.41173961402802904388961503936, 3.36717297686132964228398428076, 4.10231724367333174950511097515, 4.42388193336453212038589362937, 5.77480537487970355806809065468, 6.71219181988982744694515316125, 7.27769711072157340635311958051, 7.944914536426736263169900480939

Graph of the $Z$-function along the critical line