Properties

Label 2-5096-1.1-c1-0-110
Degree $2$
Conductor $5096$
Sign $-1$
Analytic cond. $40.6917$
Root an. cond. $6.37900$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.0697·3-s + 2.59·5-s − 2.99·9-s + 4.00·11-s − 13-s + 0.180·15-s + 1.86·17-s − 6.43·19-s − 1.24·23-s + 1.72·25-s − 0.418·27-s − 8.09·29-s − 8.57·31-s + 0.279·33-s − 6.60·37-s − 0.0697·39-s − 5.25·41-s − 6.20·43-s − 7.76·45-s + 9.73·47-s + 0.129·51-s − 10.3·53-s + 10.3·55-s − 0.448·57-s − 13.3·59-s + 11.0·61-s − 2.59·65-s + ⋯
L(s)  = 1  + 0.0402·3-s + 1.15·5-s − 0.998·9-s + 1.20·11-s − 0.277·13-s + 0.0466·15-s + 0.451·17-s − 1.47·19-s − 0.260·23-s + 0.344·25-s − 0.0804·27-s − 1.50·29-s − 1.53·31-s + 0.0486·33-s − 1.08·37-s − 0.0111·39-s − 0.820·41-s − 0.946·43-s − 1.15·45-s + 1.41·47-s + 0.0181·51-s − 1.42·53-s + 1.39·55-s − 0.0594·57-s − 1.73·59-s + 1.41·61-s − 0.321·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5096\)    =    \(2^{3} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(40.6917\)
Root analytic conductor: \(6.37900\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5096,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 0.0697T + 3T^{2} \)
5 \( 1 - 2.59T + 5T^{2} \)
11 \( 1 - 4.00T + 11T^{2} \)
17 \( 1 - 1.86T + 17T^{2} \)
19 \( 1 + 6.43T + 19T^{2} \)
23 \( 1 + 1.24T + 23T^{2} \)
29 \( 1 + 8.09T + 29T^{2} \)
31 \( 1 + 8.57T + 31T^{2} \)
37 \( 1 + 6.60T + 37T^{2} \)
41 \( 1 + 5.25T + 41T^{2} \)
43 \( 1 + 6.20T + 43T^{2} \)
47 \( 1 - 9.73T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 + 13.3T + 59T^{2} \)
61 \( 1 - 11.0T + 61T^{2} \)
67 \( 1 - 4.28T + 67T^{2} \)
71 \( 1 - 0.980T + 71T^{2} \)
73 \( 1 - 4.45T + 73T^{2} \)
79 \( 1 - 10.1T + 79T^{2} \)
83 \( 1 - 0.218T + 83T^{2} \)
89 \( 1 + 9.29T + 89T^{2} \)
97 \( 1 + 8.61T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.966499072235090068763875465369, −6.96500590732145989035794451486, −6.36649402294091110278794965747, −5.70448179041236254885445086372, −5.18260705754399564958712865049, −4.01687139740469627800684961271, −3.33018767751737112052641140356, −2.14476380727482255160946348217, −1.66731265261821828615797364172, 0, 1.66731265261821828615797364172, 2.14476380727482255160946348217, 3.33018767751737112052641140356, 4.01687139740469627800684961271, 5.18260705754399564958712865049, 5.70448179041236254885445086372, 6.36649402294091110278794965747, 6.96500590732145989035794451486, 7.966499072235090068763875465369

Graph of the $Z$-function along the critical line