Properties

Label 2-5096-1.1-c1-0-101
Degree $2$
Conductor $5096$
Sign $-1$
Analytic cond. $40.6917$
Root an. cond. $6.37900$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.89·3-s − 2.72·5-s + 0.607·9-s + 1.72·11-s + 13-s − 5.17·15-s + 7.29·17-s − 7.05·19-s − 6.84·23-s + 2.41·25-s − 4.54·27-s − 1.28·29-s − 0.275·31-s + 3.27·33-s + 8.31·37-s + 1.89·39-s + 4.18·41-s + 1.82·43-s − 1.65·45-s − 8.10·47-s + 13.8·51-s − 9.66·53-s − 4.68·55-s − 13.3·57-s − 4.82·59-s − 12.1·61-s − 2.72·65-s + ⋯
L(s)  = 1  + 1.09·3-s − 1.21·5-s + 0.202·9-s + 0.519·11-s + 0.277·13-s − 1.33·15-s + 1.77·17-s − 1.61·19-s − 1.42·23-s + 0.482·25-s − 0.874·27-s − 0.239·29-s − 0.0494·31-s + 0.569·33-s + 1.36·37-s + 0.304·39-s + 0.653·41-s + 0.277·43-s − 0.246·45-s − 1.18·47-s + 1.94·51-s − 1.32·53-s − 0.632·55-s − 1.77·57-s − 0.627·59-s − 1.56·61-s − 0.337·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5096\)    =    \(2^{3} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(40.6917\)
Root analytic conductor: \(6.37900\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5096,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 1.89T + 3T^{2} \)
5 \( 1 + 2.72T + 5T^{2} \)
11 \( 1 - 1.72T + 11T^{2} \)
17 \( 1 - 7.29T + 17T^{2} \)
19 \( 1 + 7.05T + 19T^{2} \)
23 \( 1 + 6.84T + 23T^{2} \)
29 \( 1 + 1.28T + 29T^{2} \)
31 \( 1 + 0.275T + 31T^{2} \)
37 \( 1 - 8.31T + 37T^{2} \)
41 \( 1 - 4.18T + 41T^{2} \)
43 \( 1 - 1.82T + 43T^{2} \)
47 \( 1 + 8.10T + 47T^{2} \)
53 \( 1 + 9.66T + 53T^{2} \)
59 \( 1 + 4.82T + 59T^{2} \)
61 \( 1 + 12.1T + 61T^{2} \)
67 \( 1 - 11.6T + 67T^{2} \)
71 \( 1 + 0.111T + 71T^{2} \)
73 \( 1 + 11.6T + 73T^{2} \)
79 \( 1 + 4.75T + 79T^{2} \)
83 \( 1 - 8.34T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 + 2.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84442229637859917461013671456, −7.66498826974309258492785347436, −6.42128190767943706494314678062, −5.85648169181654694444274313623, −4.58862714072647000984146364829, −3.89891798235727639659151618804, −3.45287252720643283084369868450, −2.54706150947751997533227130610, −1.47797751030311333808528288704, 0, 1.47797751030311333808528288704, 2.54706150947751997533227130610, 3.45287252720643283084369868450, 3.89891798235727639659151618804, 4.58862714072647000984146364829, 5.85648169181654694444274313623, 6.42128190767943706494314678062, 7.66498826974309258492785347436, 7.84442229637859917461013671456

Graph of the $Z$-function along the critical line