Properties

Label 2-5096-1.1-c1-0-1
Degree $2$
Conductor $5096$
Sign $1$
Analytic cond. $40.6917$
Root an. cond. $6.37900$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.25·3-s − 1.33·5-s − 1.42·9-s − 4.71·11-s + 13-s + 1.67·15-s − 7.13·17-s − 0.127·19-s − 5.10·23-s − 3.21·25-s + 5.55·27-s − 0.498·29-s − 1.28·31-s + 5.93·33-s + 0.946·37-s − 1.25·39-s − 1.55·41-s − 8.67·43-s + 1.89·45-s − 0.268·47-s + 8.97·51-s − 5.14·53-s + 6.29·55-s + 0.160·57-s + 10.2·59-s − 4.39·61-s − 1.33·65-s + ⋯
L(s)  = 1  − 0.725·3-s − 0.596·5-s − 0.473·9-s − 1.42·11-s + 0.277·13-s + 0.433·15-s − 1.73·17-s − 0.0293·19-s − 1.06·23-s − 0.643·25-s + 1.06·27-s − 0.0925·29-s − 0.231·31-s + 1.03·33-s + 0.155·37-s − 0.201·39-s − 0.242·41-s − 1.32·43-s + 0.282·45-s − 0.0392·47-s + 1.25·51-s − 0.707·53-s + 0.849·55-s + 0.0213·57-s + 1.33·59-s − 0.562·61-s − 0.165·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5096 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5096\)    =    \(2^{3} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(40.6917\)
Root analytic conductor: \(6.37900\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5096,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2522487844\)
\(L(\frac12)\) \(\approx\) \(0.2522487844\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 1.25T + 3T^{2} \)
5 \( 1 + 1.33T + 5T^{2} \)
11 \( 1 + 4.71T + 11T^{2} \)
17 \( 1 + 7.13T + 17T^{2} \)
19 \( 1 + 0.127T + 19T^{2} \)
23 \( 1 + 5.10T + 23T^{2} \)
29 \( 1 + 0.498T + 29T^{2} \)
31 \( 1 + 1.28T + 31T^{2} \)
37 \( 1 - 0.946T + 37T^{2} \)
41 \( 1 + 1.55T + 41T^{2} \)
43 \( 1 + 8.67T + 43T^{2} \)
47 \( 1 + 0.268T + 47T^{2} \)
53 \( 1 + 5.14T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 + 4.39T + 61T^{2} \)
67 \( 1 - 9.65T + 67T^{2} \)
71 \( 1 + 0.991T + 71T^{2} \)
73 \( 1 + 4.01T + 73T^{2} \)
79 \( 1 + 14.9T + 79T^{2} \)
83 \( 1 + 9.28T + 83T^{2} \)
89 \( 1 - 15.7T + 89T^{2} \)
97 \( 1 - 10.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.274949596362117025593730296262, −7.54266721126612996010968580118, −6.70095792030394427597463048822, −6.03885849908357167645185658394, −5.31947216904659500154837106097, −4.64401433390056541093991200188, −3.83249047474756517656548227241, −2.81378947363132926883476888679, −1.95760445799339669474470836218, −0.26481844993917942091556765135, 0.26481844993917942091556765135, 1.95760445799339669474470836218, 2.81378947363132926883476888679, 3.83249047474756517656548227241, 4.64401433390056541093991200188, 5.31947216904659500154837106097, 6.03885849908357167645185658394, 6.70095792030394427597463048822, 7.54266721126612996010968580118, 8.274949596362117025593730296262

Graph of the $Z$-function along the critical line