L(s) = 1 | + (−0.647 − 1.25i)2-s + (−1.16 + 1.62i)4-s + (2.08 − 3.61i)5-s + (2.39 − 1.12i)7-s + (2.79 + 0.407i)8-s + (−5.89 − 0.284i)10-s + (0.855 + 1.48i)11-s + 1.54·13-s + (−2.95 − 2.28i)14-s + (−1.29 − 3.78i)16-s + (−2.02 + 1.16i)17-s + (6.09 + 3.52i)19-s + (3.45 + 7.60i)20-s + (1.30 − 2.03i)22-s + (−0.406 − 0.234i)23-s + ⋯ |
L(s) = 1 | + (−0.457 − 0.889i)2-s + (−0.581 + 0.813i)4-s + (0.933 − 1.61i)5-s + (0.905 − 0.423i)7-s + (0.989 + 0.144i)8-s + (−1.86 − 0.0900i)10-s + (0.257 + 0.446i)11-s + 0.427·13-s + (−0.791 − 0.611i)14-s + (−0.324 − 0.945i)16-s + (−0.490 + 0.282i)17-s + (1.39 + 0.807i)19-s + (0.773 + 1.69i)20-s + (0.279 − 0.433i)22-s + (−0.0846 − 0.0488i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.350 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.350 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.804630 - 1.15998i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.804630 - 1.15998i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.647 + 1.25i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.39 + 1.12i)T \) |
good | 5 | \( 1 + (-2.08 + 3.61i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.855 - 1.48i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.54T + 13T^{2} \) |
| 17 | \( 1 + (2.02 - 1.16i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.09 - 3.52i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.406 + 0.234i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.33iT - 29T^{2} \) |
| 31 | \( 1 + (1.58 + 2.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (7.74 + 4.47i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5.31iT - 41T^{2} \) |
| 43 | \( 1 + 3.42T + 43T^{2} \) |
| 47 | \( 1 + (2.95 - 5.11i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.35 - 0.781i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.26 + 3.04i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.55 - 7.89i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.73 - 6.47i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.49iT - 71T^{2} \) |
| 73 | \( 1 + (12.5 - 7.26i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.46 - 0.843i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 2.72iT - 83T^{2} \) |
| 89 | \( 1 + (1.83 + 1.06i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51471310045591256552239836738, −9.747938458699394901626379246568, −8.946332489739623480616116241513, −8.349580940684098685898382589525, −7.34150922015734607143000186984, −5.61007322212286131734104129344, −4.81104157731936532383485387198, −3.85967093329045248127849527981, −1.91961204313311942822625500481, −1.17600325415290934755067588586,
1.75749920762677680674845130967, 3.19100946404962523184872122424, 4.96008206756391546262005143942, 5.84544698419857840126567535826, 6.67555342558645412124847802969, 7.39198995451516505058971037637, 8.480586330130082368042050868640, 9.388176760527018448975426287682, 10.17733351999887450172953218492, 11.05501294033617788416528697658