| L(s) = 1 | + i·2-s − 3-s − 4-s + (−0.866 − 0.5i)5-s − i·6-s − i·7-s − i·8-s + 9-s + (0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 12-s + (0.866 − 0.5i)13-s + 14-s + (0.866 + 0.5i)15-s + 16-s + (0.5 − 0.866i)17-s + ⋯ |
| L(s) = 1 | + i·2-s − 3-s − 4-s + (−0.866 − 0.5i)5-s − i·6-s − i·7-s − i·8-s + 9-s + (0.5 − 0.866i)10-s + (0.5 + 0.866i)11-s + 12-s + (0.866 − 0.5i)13-s + 14-s + (0.866 + 0.5i)15-s + 16-s + (0.5 − 0.866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 + 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 + 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4837417074\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4837417074\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 + iT \) |
| good | 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 - 2iT - T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11847323314820698440922546244, −10.15295785553606721950257362694, −9.306857326220757787907207699068, −8.058960658808242727174942574579, −7.38320011521472266620896251791, −6.61097744508091836758627332188, −5.56108583574107768908033895979, −4.37481272729121685199009028681, −4.05094465565953211715815421944, −0.76588111273126456913913258676,
1.66288235984031319277214187681, 3.48287038876852472229560576601, 4.13222332442139217877586155306, 5.65569622121145456965830989656, 6.18198229895547445248637464167, 7.75542194234591870291785121086, 8.620110418649082962331585751552, 9.609610684323911456379524875308, 10.67846571448001885872639537289, 11.26781369456864437475101337467