L(s) = 1 | + (0.5 − 0.866i)2-s + i·3-s + (−0.499 − 0.866i)4-s + (−0.866 − 1.5i)5-s + (0.866 + 0.5i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s − 9-s − 1.73·10-s + (0.866 − 0.499i)12-s + (−0.499 − 0.866i)14-s + (1.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + 1.73·19-s + (−0.866 + 1.49i)20-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + i·3-s + (−0.499 − 0.866i)4-s + (−0.866 − 1.5i)5-s + (0.866 + 0.5i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s − 9-s − 1.73·10-s + (0.866 − 0.499i)12-s + (−0.499 − 0.866i)14-s + (1.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s + 1.73·19-s + (−0.866 + 1.49i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9248003092\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9248003092\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 - iT \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - 1.73T + T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14989902992705414492875802802, −10.02659088933518166318991761433, −9.319589536819593221049397456668, −8.514671110352464865938652911967, −7.50427033555610812423659610660, −5.53439111412024353863594650571, −4.90783215116222407597256070595, −4.15029549931977262429035031629, −3.33083573454878803575661571539, −1.12822473046459807698251101130,
2.61924620992550079111612598540, 3.42048395291419444541520483381, 5.02494698394596078496690802273, 6.09381690610835088742178254572, 6.87213240171755611725731495009, 7.61643387063820742629256065344, 8.185746193896863876157235988995, 9.276253700110870653515629246154, 10.86301612824383687972804432646, 11.71999586499176044976990895085