| L(s) = 1 | + (−0.5 + 0.866i)2-s + 3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + 9-s − 0.999·10-s + (−0.499 − 0.866i)12-s + (−1 − 1.73i)13-s + (−0.499 − 0.866i)14-s + (0.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s − 19-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)2-s + 3-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (−0.5 + 0.866i)6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + 9-s − 0.999·10-s + (−0.499 − 0.866i)12-s + (−1 − 1.73i)13-s + (−0.499 − 0.866i)14-s + (0.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9180494417\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9180494417\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85615308179037527096033707483, −10.05336237641633738941287371096, −9.548843887652243704977109060494, −8.569730251692255414767893088893, −7.78741213173594247147192461213, −6.90648135148348130200714294975, −6.00478283645380134632712850492, −4.97231901674417063433174229573, −3.24584509188937312741968202860, −2.24204347859469371287362129720,
1.55295682418007375271480264696, 2.67046259978795969709661450435, 4.12076537595443995934849092890, 4.64030483812028349803504844570, 6.73256908674013255759844335816, 7.50429823732128498679165418175, 8.734186844481811898744008869376, 9.135801004569564371320108454935, 9.913468260948056977983502797938, 10.63730981310339958248220375650