| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + i·5-s − 0.999i·6-s + (−0.866 + 0.5i)7-s − 0.999i·8-s + (−0.499 − 0.866i)9-s + (0.5 + 0.866i)10-s − 11-s + (−0.499 − 0.866i)12-s + (0.866 − 0.5i)13-s + (−0.499 + 0.866i)14-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯ |
| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + i·5-s − 0.999i·6-s + (−0.866 + 0.5i)7-s − 0.999i·8-s + (−0.499 − 0.866i)9-s + (0.5 + 0.866i)10-s − 11-s + (−0.499 − 0.866i)12-s + (0.866 − 0.5i)13-s + (−0.499 + 0.866i)14-s + (0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.447292918\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.447292918\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| good | 5 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 + T + T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 - iT - T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98554035597745859829219114553, −10.36957256466345044438942135131, −9.367610731504623448786799079425, −8.085192026662523928167662802492, −7.17512174613870938274356961699, −6.10108977121439847664956105504, −5.73866994805074998174581767687, −3.63772600769685368671720852398, −3.08398360977115788243994605674, −1.95492285343896800922369380199,
2.65695008032465853986207158804, 3.72379737935164288748811031295, 4.67421432204081251838781987181, 5.37899297025946147604761781902, 6.61154952234864529310654398574, 7.71269792194538599988972282068, 8.660033629033128786595068180095, 9.296353273909206408190557074832, 10.50044606626603565681818140247, 11.24142186837053815079842872039