L(s) = 1 | + (0.852 + 1.80i)2-s + (−2.54 + 3.08i)4-s − 9.10i·5-s + (−0.958 + 6.93i)7-s + (−7.75 − 1.98i)8-s + (16.4 − 7.76i)10-s + 9.66i·11-s − 2.31·13-s + (−13.3 + 4.17i)14-s + (−3.02 − 15.7i)16-s − 21.8·17-s + 26.9i·19-s + (28.0 + 23.2i)20-s + (−17.4 + 8.23i)22-s + 15.4·23-s + ⋯ |
L(s) = 1 | + (0.426 + 0.904i)2-s + (−0.636 + 0.770i)4-s − 1.82i·5-s + (−0.136 + 0.990i)7-s + (−0.968 − 0.247i)8-s + (1.64 − 0.776i)10-s + 0.878i·11-s − 0.178·13-s + (−0.954 + 0.298i)14-s + (−0.188 − 0.982i)16-s − 1.28·17-s + 1.41i·19-s + (1.40 + 1.16i)20-s + (−0.794 + 0.374i)22-s + 0.670·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 + 0.225i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.974 + 0.225i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6479609603\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6479609603\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.852 - 1.80i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.958 - 6.93i)T \) |
good | 5 | \( 1 + 9.10iT - 25T^{2} \) |
| 11 | \( 1 - 9.66iT - 121T^{2} \) |
| 13 | \( 1 + 2.31T + 169T^{2} \) |
| 17 | \( 1 + 21.8T + 289T^{2} \) |
| 19 | \( 1 - 26.9iT - 361T^{2} \) |
| 23 | \( 1 - 15.4T + 529T^{2} \) |
| 29 | \( 1 + 18.1T + 841T^{2} \) |
| 31 | \( 1 + 45.9T + 961T^{2} \) |
| 37 | \( 1 - 32.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 33.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 60.5T + 1.84e3T^{2} \) |
| 47 | \( 1 - 29.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 65.7T + 2.80e3T^{2} \) |
| 59 | \( 1 - 8.47T + 3.48e3T^{2} \) |
| 61 | \( 1 - 74.9T + 3.72e3T^{2} \) |
| 67 | \( 1 - 20.2T + 4.48e3T^{2} \) |
| 71 | \( 1 - 21.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + 100. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 78.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 67.6T + 6.88e3T^{2} \) |
| 89 | \( 1 - 130.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 175. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.67709214957590188880495547955, −9.850427428919510525277797539868, −9.050276791500745122108766332800, −8.581766901953905017934505425855, −7.66401312605924276450375781320, −6.44568700215539578403322582584, −5.36564682224110188302921883840, −4.88729617972409543022443090004, −3.80760912270126650434965306146, −1.90315929452287505580657978013,
0.21145126605239024723015253536, 2.23397369699630200340349267653, 3.24005879679490419313479969046, 4.00197821689066731938660523003, 5.41180768668185742587726660277, 6.71378354658168804689003121642, 7.08633433259458998666346561333, 8.667823036488066023268666548185, 9.715498978242327949011060491726, 10.58507312516574807822072347539