| L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + i·7-s + (−0.707 + 0.707i)8-s − 1.41i·11-s + (−0.707 + 0.707i)14-s − 1.00·16-s + (1.00 − 1.00i)22-s − 1.41·23-s + 25-s − 1.00·28-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 2i·37-s + 1.41·44-s + ⋯ |
| L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + i·7-s + (−0.707 + 0.707i)8-s − 1.41i·11-s + (−0.707 + 0.707i)14-s − 1.00·16-s + (1.00 − 1.00i)22-s − 1.41·23-s + 25-s − 1.00·28-s + 1.41·29-s + (−0.707 − 0.707i)32-s − 2i·37-s + 1.41·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.169 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.202835113\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.202835113\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - iT \) |
| good | 5 | \( 1 - T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 1.41T + T^{2} \) |
| 29 | \( 1 - 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + 2iT - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.41T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.57944660976374549348737807346, −10.63814917999106559165594636977, −9.187575402947078960247140622507, −8.528876386654543243553871521792, −7.76229341550024307099609958232, −6.41640413296609098781640626571, −5.86914721108868346164710145062, −4.89544325237358754597032774619, −3.60173891267830790149977700977, −2.55031771968709636529691255159,
1.56974987402061318053921220907, 3.01076748836098431101843715498, 4.30620581347416844346422667419, 4.83375575350071086980997785005, 6.31370563606752032929309741296, 7.06485411918232500301385965945, 8.241707418754466703895218083264, 9.671009090262501788762736373191, 10.12834567598797130212188382852, 10.90944344399717617207517728970