L(s) = 1 | + 23.7·5-s + 49·7-s − 590.·11-s + 505.·13-s − 517.·17-s + 932.·19-s + 3.55e3·23-s − 2.55e3·25-s − 5.39e3·29-s − 8.32e3·31-s + 1.16e3·35-s − 4.93e3·37-s − 5.88e3·41-s + 1.35e4·43-s + 7.35e3·47-s + 2.40e3·49-s + 3.34e3·53-s − 1.40e4·55-s − 4.26e4·59-s + 5.13e4·61-s + 1.20e4·65-s − 3.37e4·67-s + 1.78e4·71-s − 2.06e4·73-s − 2.89e4·77-s + 9.92e4·79-s − 6.12e4·83-s + ⋯ |
L(s) = 1 | + 0.425·5-s + 0.377·7-s − 1.47·11-s + 0.828·13-s − 0.434·17-s + 0.592·19-s + 1.39·23-s − 0.819·25-s − 1.19·29-s − 1.55·31-s + 0.160·35-s − 0.592·37-s − 0.546·41-s + 1.11·43-s + 0.485·47-s + 0.142·49-s + 0.163·53-s − 0.626·55-s − 1.59·59-s + 1.76·61-s + 0.352·65-s − 0.918·67-s + 0.420·71-s − 0.453·73-s − 0.556·77-s + 1.78·79-s − 0.975·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 504 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - 49T \) |
good | 5 | \( 1 - 23.7T + 3.12e3T^{2} \) |
| 11 | \( 1 + 590.T + 1.61e5T^{2} \) |
| 13 | \( 1 - 505.T + 3.71e5T^{2} \) |
| 17 | \( 1 + 517.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 932.T + 2.47e6T^{2} \) |
| 23 | \( 1 - 3.55e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 5.39e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 8.32e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 4.93e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 5.88e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.35e4T + 1.47e8T^{2} \) |
| 47 | \( 1 - 7.35e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 3.34e3T + 4.18e8T^{2} \) |
| 59 | \( 1 + 4.26e4T + 7.14e8T^{2} \) |
| 61 | \( 1 - 5.13e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 3.37e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 1.78e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 2.06e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 9.92e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 6.12e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + 9.01e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.55e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.630342746918768386974113426674, −8.839494181144205098632858422830, −7.83796612066529403301010843215, −7.05776559915921493718236116441, −5.70371375546467631376438504720, −5.18763947082605368883341084022, −3.80922923162907778041928421284, −2.60476349088923990572193470942, −1.48168821974689201262425074880, 0,
1.48168821974689201262425074880, 2.60476349088923990572193470942, 3.80922923162907778041928421284, 5.18763947082605368883341084022, 5.70371375546467631376438504720, 7.05776559915921493718236116441, 7.83796612066529403301010843215, 8.839494181144205098632858422830, 9.630342746918768386974113426674