Properties

Label 2-495-1.1-c5-0-39
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $79.3899$
Root an. cond. $8.91010$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.96·2-s + 16.4·4-s − 25·5-s + 244.·7-s − 108.·8-s − 174.·10-s − 121·11-s + 742.·13-s + 1.69e3·14-s − 1.27e3·16-s − 170.·17-s + 388.·19-s − 412.·20-s − 842.·22-s − 224.·23-s + 625·25-s + 5.17e3·26-s + 4.02e3·28-s + 5.57e3·29-s − 6.17e3·31-s − 5.45e3·32-s − 1.18e3·34-s − 6.10e3·35-s + 4.51e3·37-s + 2.70e3·38-s + 2.70e3·40-s + 8.77e3·41-s + ⋯
L(s)  = 1  + 1.23·2-s + 0.515·4-s − 0.447·5-s + 1.88·7-s − 0.596·8-s − 0.550·10-s − 0.301·11-s + 1.21·13-s + 2.31·14-s − 1.24·16-s − 0.142·17-s + 0.246·19-s − 0.230·20-s − 0.371·22-s − 0.0885·23-s + 0.200·25-s + 1.50·26-s + 0.969·28-s + 1.23·29-s − 1.15·31-s − 0.941·32-s − 0.175·34-s − 0.841·35-s + 0.542·37-s + 0.303·38-s + 0.266·40-s + 0.815·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(79.3899\)
Root analytic conductor: \(8.91010\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.706805350\)
\(L(\frac12)\) \(\approx\) \(4.706805350\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 25T \)
11 \( 1 + 121T \)
good2 \( 1 - 6.96T + 32T^{2} \)
7 \( 1 - 244.T + 1.68e4T^{2} \)
13 \( 1 - 742.T + 3.71e5T^{2} \)
17 \( 1 + 170.T + 1.41e6T^{2} \)
19 \( 1 - 388.T + 2.47e6T^{2} \)
23 \( 1 + 224.T + 6.43e6T^{2} \)
29 \( 1 - 5.57e3T + 2.05e7T^{2} \)
31 \( 1 + 6.17e3T + 2.86e7T^{2} \)
37 \( 1 - 4.51e3T + 6.93e7T^{2} \)
41 \( 1 - 8.77e3T + 1.15e8T^{2} \)
43 \( 1 - 8.43e3T + 1.47e8T^{2} \)
47 \( 1 + 7.34e3T + 2.29e8T^{2} \)
53 \( 1 - 3.28e4T + 4.18e8T^{2} \)
59 \( 1 + 3.41e4T + 7.14e8T^{2} \)
61 \( 1 - 4.48e4T + 8.44e8T^{2} \)
67 \( 1 - 1.43e4T + 1.35e9T^{2} \)
71 \( 1 + 3.13e4T + 1.80e9T^{2} \)
73 \( 1 - 2.81e4T + 2.07e9T^{2} \)
79 \( 1 + 7.14e4T + 3.07e9T^{2} \)
83 \( 1 - 1.16e5T + 3.93e9T^{2} \)
89 \( 1 - 1.00e5T + 5.58e9T^{2} \)
97 \( 1 - 1.37e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60264251594939121110126989071, −8.987150007365920224778305219591, −8.303372004700780495585986916342, −7.40907435387931412046955595322, −6.10599582038686255203352171878, −5.21532168750058142519687118617, −4.46856428146374591635317476673, −3.65886141438779491833078134327, −2.30540797908668953254207799016, −0.962052022345610837008241556928, 0.962052022345610837008241556928, 2.30540797908668953254207799016, 3.65886141438779491833078134327, 4.46856428146374591635317476673, 5.21532168750058142519687118617, 6.10599582038686255203352171878, 7.40907435387931412046955595322, 8.303372004700780495585986916342, 8.987150007365920224778305219591, 10.60264251594939121110126989071

Graph of the $Z$-function along the critical line