Properties

Label 2-495-1.1-c1-0-13
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $3.95259$
Root an. cond. $1.98811$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.28·2-s + 3.22·4-s − 5-s + 2.51·7-s + 2.80·8-s − 2.28·10-s + 11-s + 6.05·13-s + 5.76·14-s − 0.0392·16-s − 4.97·17-s − 7.02·19-s − 3.22·20-s + 2.28·22-s + 4.45·23-s + 25-s + 13.8·26-s + 8.13·28-s + 0.921·29-s + 3.03·31-s − 5.70·32-s − 11.3·34-s − 2.51·35-s − 3.49·37-s − 16.0·38-s − 2.80·40-s − 10.0·41-s + ⋯
L(s)  = 1  + 1.61·2-s + 1.61·4-s − 0.447·5-s + 0.952·7-s + 0.992·8-s − 0.722·10-s + 0.301·11-s + 1.67·13-s + 1.53·14-s − 0.00981·16-s − 1.20·17-s − 1.61·19-s − 0.721·20-s + 0.487·22-s + 0.928·23-s + 0.200·25-s + 2.71·26-s + 1.53·28-s + 0.171·29-s + 0.545·31-s − 1.00·32-s − 1.95·34-s − 0.425·35-s − 0.574·37-s − 2.60·38-s − 0.443·40-s − 1.57·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(3.95259\)
Root analytic conductor: \(1.98811\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.417491590\)
\(L(\frac12)\) \(\approx\) \(3.417491590\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
11 \( 1 - T \)
good2 \( 1 - 2.28T + 2T^{2} \)
7 \( 1 - 2.51T + 7T^{2} \)
13 \( 1 - 6.05T + 13T^{2} \)
17 \( 1 + 4.97T + 17T^{2} \)
19 \( 1 + 7.02T + 19T^{2} \)
23 \( 1 - 4.45T + 23T^{2} \)
29 \( 1 - 0.921T + 29T^{2} \)
31 \( 1 - 3.03T + 31T^{2} \)
37 \( 1 + 3.49T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 - 1.48T + 43T^{2} \)
47 \( 1 + 8.10T + 47T^{2} \)
53 \( 1 + 1.54T + 53T^{2} \)
59 \( 1 + 7.59T + 59T^{2} \)
61 \( 1 - 10.1T + 61T^{2} \)
67 \( 1 + 8.69T + 67T^{2} \)
71 \( 1 - 1.54T + 71T^{2} \)
73 \( 1 - 6.05T + 73T^{2} \)
79 \( 1 - 11.0T + 79T^{2} \)
83 \( 1 + 8.50T + 83T^{2} \)
89 \( 1 - 15.1T + 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16974359454072944976660186240, −10.71421678295840862449871639226, −8.844732705315567740520444723530, −8.277403358776855777713178053940, −6.79591229519875681372710899646, −6.25239210996437674214797573033, −4.96322108299691404875600581196, −4.30061259606992361945299167373, −3.36804369237588573730318615821, −1.86928691673103648163089535823, 1.86928691673103648163089535823, 3.36804369237588573730318615821, 4.30061259606992361945299167373, 4.96322108299691404875600581196, 6.25239210996437674214797573033, 6.79591229519875681372710899646, 8.277403358776855777713178053940, 8.844732705315567740520444723530, 10.71421678295840862449871639226, 11.16974359454072944976660186240

Graph of the $Z$-function along the critical line