| L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.792 − 1.37i)3-s + (0.499 − 0.866i)4-s + 2.09i·5-s + (−1.37 − 0.792i)6-s + (2.83 + 1.63i)7-s − 0.999i·8-s + (0.243 − 0.421i)9-s + (1.04 + 1.81i)10-s + (0.161 − 0.0934i)11-s − 1.58·12-s + (3.44 + 1.07i)13-s + 3.27·14-s + (2.87 − 1.65i)15-s + (−0.5 − 0.866i)16-s + (1.41 − 2.44i)17-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.457 − 0.792i)3-s + (0.249 − 0.433i)4-s + 0.934i·5-s + (−0.560 − 0.323i)6-s + (1.07 + 0.618i)7-s − 0.353i·8-s + (0.0810 − 0.140i)9-s + (0.330 + 0.572i)10-s + (0.0488 − 0.0281i)11-s − 0.457·12-s + (0.954 + 0.297i)13-s + 0.875·14-s + (0.741 − 0.427i)15-s + (−0.125 − 0.216i)16-s + (0.343 − 0.594i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.668 + 0.743i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.668 + 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.82979 - 0.814959i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.82979 - 0.814959i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.44 - 1.07i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| good | 3 | \( 1 + (0.792 + 1.37i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 2.09iT - 5T^{2} \) |
| 7 | \( 1 + (-2.83 - 1.63i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.161 + 0.0934i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.41 + 2.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.766 + 1.32i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.51 + 4.36i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.59iT - 31T^{2} \) |
| 37 | \( 1 + (-1.78 + 1.03i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.08 + 1.78i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.84 - 6.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 5.47iT - 47T^{2} \) |
| 53 | \( 1 - 1.39T + 53T^{2} \) |
| 59 | \( 1 + (1.68 + 0.970i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.15 - 7.20i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.01 - 0.586i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.68 + 1.54i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11.9iT - 73T^{2} \) |
| 79 | \( 1 + 2.06T + 79T^{2} \) |
| 83 | \( 1 - 13.1iT - 83T^{2} \) |
| 89 | \( 1 + (-7.96 + 4.60i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.637 - 0.367i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26656141038414637625512947189, −10.28749070334886717477843818252, −9.058225495366153024522073806883, −7.917688570772630713432047345175, −6.91642601614644012196793305172, −6.20392616011389278401072611504, −5.27688756812313837538541392741, −3.97505896099134376998588457389, −2.63304710758369728750841317362, −1.41200303461300241333834715813,
1.52025133213904128939553208453, 3.71760742116380038415588401275, 4.51735045932222442361014893794, 5.19814538263773733689392198099, 6.08204241230113567631324369597, 7.56619792395015599436252051631, 8.229989420144404657425328644387, 9.227145089620927522921947822990, 10.49553806991273319196519374878, 10.99355848808481653063541845498