L(s) = 1 | + (0.866 − 0.5i)2-s + (−1.68 − 2.91i)3-s + (0.499 − 0.866i)4-s + 3.01i·5-s + (−2.91 − 1.68i)6-s + (−1.39 − 0.802i)7-s − 0.999i·8-s + (−4.15 + 7.20i)9-s + (1.50 + 2.61i)10-s + (−4.10 + 2.37i)11-s − 3.36·12-s + (−2.81 − 2.25i)13-s − 1.60·14-s + (8.79 − 5.07i)15-s + (−0.5 − 0.866i)16-s + (−1.57 + 2.72i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.971 − 1.68i)3-s + (0.249 − 0.433i)4-s + 1.34i·5-s + (−1.18 − 0.686i)6-s + (−0.525 − 0.303i)7-s − 0.353i·8-s + (−1.38 + 2.40i)9-s + (0.477 + 0.826i)10-s + (−1.23 + 0.715i)11-s − 0.971·12-s + (−0.780 − 0.625i)13-s − 0.429·14-s + (2.27 − 1.31i)15-s + (−0.125 − 0.216i)16-s + (−0.382 + 0.661i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.351 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.351 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0391628 + 0.0565186i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0391628 + 0.0565186i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (2.81 + 2.25i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
good | 3 | \( 1 + (1.68 + 2.91i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3.01iT - 5T^{2} \) |
| 7 | \( 1 + (1.39 + 0.802i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.10 - 2.37i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.57 - 2.72i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (2.21 + 3.84i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.991 + 1.71i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.75iT - 31T^{2} \) |
| 37 | \( 1 + (-7.31 + 4.22i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.94 - 3.43i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.19 + 3.80i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 12.7iT - 47T^{2} \) |
| 53 | \( 1 + 9.81T + 53T^{2} \) |
| 59 | \( 1 + (4.81 + 2.78i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.50 - 6.07i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.73 + 2.15i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.443 + 0.256i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 0.764iT - 73T^{2} \) |
| 79 | \( 1 + 1.84T + 79T^{2} \) |
| 83 | \( 1 + 15.5iT - 83T^{2} \) |
| 89 | \( 1 + (-5.93 + 3.42i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.854 - 0.493i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67637898846680991798748963109, −10.02455000335084707294310612123, −7.86791939121365137925045389297, −7.40918014598486365829374370194, −6.47730673232365154582339700048, −5.96586546109596199177240987577, −4.74651222808726175848560022157, −2.83756415015352539695830159051, −2.15838237894786753477284549130, −0.03461462059287344876768309995,
3.07999219058118768645716429995, 4.27906488884107900223815205700, 5.08429525294544071967183511527, 5.46229573731139893705842703356, 6.53415557859392375476525287585, 8.162917949411130634462055473824, 9.148847219346782192036284888263, 9.699956694184792896903861871905, 10.73892853690130601549460691503, 11.63405476120631718941835763998