L(s) = 1 | + (0.866 − 0.5i)2-s + (0.449 + 0.778i)3-s + (0.499 − 0.866i)4-s − 0.684i·5-s + (0.778 + 0.449i)6-s + (2.72 + 1.57i)7-s − 0.999i·8-s + (1.09 − 1.89i)9-s + (−0.342 − 0.592i)10-s + (1.21 − 0.699i)11-s + 0.898·12-s + (−3.54 + 0.639i)13-s + 3.14·14-s + (0.532 − 0.307i)15-s + (−0.5 − 0.866i)16-s + (−0.975 + 1.69i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.259 + 0.449i)3-s + (0.249 − 0.433i)4-s − 0.305i·5-s + (0.317 + 0.183i)6-s + (1.02 + 0.593i)7-s − 0.353i·8-s + (0.365 − 0.632i)9-s + (−0.108 − 0.187i)10-s + (0.365 − 0.210i)11-s + 0.259·12-s + (−0.984 + 0.177i)13-s + 0.839·14-s + (0.137 − 0.0793i)15-s + (−0.125 − 0.216i)16-s + (−0.236 + 0.409i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 + 0.350i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.936 + 0.350i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.35641 - 0.426456i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.35641 - 0.426456i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (3.54 - 0.639i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
good | 3 | \( 1 + (-0.449 - 0.778i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 0.684iT - 5T^{2} \) |
| 7 | \( 1 + (-2.72 - 1.57i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.21 + 0.699i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.975 - 1.69i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.10 - 1.91i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.92 + 3.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.71iT - 31T^{2} \) |
| 37 | \( 1 + (-2.19 + 1.26i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (5.58 - 3.22i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.32 - 2.29i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.10iT - 47T^{2} \) |
| 53 | \( 1 + 9.51T + 53T^{2} \) |
| 59 | \( 1 + (3.82 + 2.20i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.15 - 10.6i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.12 - 3.53i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.16 + 4.13i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11.1iT - 73T^{2} \) |
| 79 | \( 1 + 5.19T + 79T^{2} \) |
| 83 | \( 1 - 1.27iT - 83T^{2} \) |
| 89 | \( 1 + (0.584 - 0.337i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.92 - 2.84i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09003613679890467026571321948, −9.982898917389025029364993135270, −9.239738544446745381361267075693, −8.377899619441910043473618619559, −7.19466681606380490720118296791, −6.01556291868184777901116282738, −4.92920708288770905079123577911, −4.25501590392709643323051349453, −2.96861081879866518016243532327, −1.56451583010449087033145632655,
1.72330723836916521062140676433, 3.01396691911002030953947623909, 4.57181829930293382618595885316, 5.04120272467649452988847536012, 6.62908243508328200210277684862, 7.34714169306001080713857051737, 7.910474766012065491175362313007, 9.034213460774194577056753605121, 10.36040633319124521864695212639, 11.02662531165382403091303463731