Properties

Label 2-494-1.1-c1-0-15
Degree $2$
Conductor $494$
Sign $1$
Analytic cond. $3.94460$
Root an. cond. $1.98610$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3.24·3-s + 4-s + 1.55·5-s + 3.24·6-s − 3.60·7-s + 8-s + 7.54·9-s + 1.55·10-s − 5.18·11-s + 3.24·12-s − 13-s − 3.60·14-s + 5.04·15-s + 16-s − 5.96·17-s + 7.54·18-s − 19-s + 1.55·20-s − 11.7·21-s − 5.18·22-s + 4.29·23-s + 3.24·24-s − 2.58·25-s − 26-s + 14.7·27-s − 3.60·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.87·3-s + 0.5·4-s + 0.695·5-s + 1.32·6-s − 1.36·7-s + 0.353·8-s + 2.51·9-s + 0.491·10-s − 1.56·11-s + 0.937·12-s − 0.277·13-s − 0.963·14-s + 1.30·15-s + 0.250·16-s − 1.44·17-s + 1.77·18-s − 0.229·19-s + 0.347·20-s − 2.55·21-s − 1.10·22-s + 0.895·23-s + 0.662·24-s − 0.516·25-s − 0.196·26-s + 2.83·27-s − 0.681·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 494 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(494\)    =    \(2 \cdot 13 \cdot 19\)
Sign: $1$
Analytic conductor: \(3.94460\)
Root analytic conductor: \(1.98610\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 494,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.517772461\)
\(L(\frac12)\) \(\approx\) \(3.517772461\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
13 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 3.24T + 3T^{2} \)
5 \( 1 - 1.55T + 5T^{2} \)
7 \( 1 + 3.60T + 7T^{2} \)
11 \( 1 + 5.18T + 11T^{2} \)
17 \( 1 + 5.96T + 17T^{2} \)
23 \( 1 - 4.29T + 23T^{2} \)
29 \( 1 - 2.91T + 29T^{2} \)
31 \( 1 - 6.04T + 31T^{2} \)
37 \( 1 + 6.71T + 37T^{2} \)
41 \( 1 + 9.83T + 41T^{2} \)
43 \( 1 - 5.16T + 43T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 - 3.82T + 53T^{2} \)
59 \( 1 - 13.5T + 59T^{2} \)
61 \( 1 + 0.615T + 61T^{2} \)
67 \( 1 + 0.987T + 67T^{2} \)
71 \( 1 + 4.71T + 71T^{2} \)
73 \( 1 - 6.59T + 73T^{2} \)
79 \( 1 - 10.7T + 79T^{2} \)
83 \( 1 - 3.91T + 83T^{2} \)
89 \( 1 - 0.789T + 89T^{2} \)
97 \( 1 + 15.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53896974605475485788197478097, −10.03542419629717932672372039340, −9.141562304048337911310730887243, −8.349756617551803266920659796152, −7.22843160276578310176244929756, −6.51734864557572031100452977380, −5.09478798309212428707265395498, −3.86969914216570995642031228357, −2.76908488562763858098823260755, −2.32293108381425864428261622317, 2.32293108381425864428261622317, 2.76908488562763858098823260755, 3.86969914216570995642031228357, 5.09478798309212428707265395498, 6.51734864557572031100452977380, 7.22843160276578310176244929756, 8.349756617551803266920659796152, 9.141562304048337911310730887243, 10.03542419629717932672372039340, 10.53896974605475485788197478097

Graph of the $Z$-function along the critical line