L(s) = 1 | − 4·2-s + 9·3-s + 16·4-s − 25·5-s − 36·6-s − 64·8-s − 162·9-s + 100·10-s − 187·11-s + 144·12-s − 627·13-s − 225·15-s + 256·16-s − 1.81e3·17-s + 648·18-s − 258·19-s − 400·20-s + 748·22-s + 2.97e3·23-s − 576·24-s + 625·25-s + 2.50e3·26-s − 3.64e3·27-s + 1.29e3·29-s + 900·30-s − 1.91e3·31-s − 1.02e3·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.465·11-s + 0.288·12-s − 1.02·13-s − 0.258·15-s + 1/4·16-s − 1.52·17-s + 0.471·18-s − 0.163·19-s − 0.223·20-s + 0.329·22-s + 1.17·23-s − 0.204·24-s + 1/5·25-s + 0.727·26-s − 0.962·27-s + 0.286·29-s + 0.182·30-s − 0.358·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(490s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(490s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.9233279383 |
L(21) |
≈ |
0.9233279383 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 5 | 1+p2T |
| 7 | 1 |
good | 3 | 1−p2T+p5T2 |
| 11 | 1+17pT+p5T2 |
| 13 | 1+627T+p5T2 |
| 17 | 1+1813T+p5T2 |
| 19 | 1+258T+p5T2 |
| 23 | 1−2970T+p5T2 |
| 29 | 1−1299T+p5T2 |
| 31 | 1+1916T+p5T2 |
| 37 | 1−6578T+p5T2 |
| 41 | 1+6676T+p5T2 |
| 43 | 1−3178T+p5T2 |
| 47 | 1−22001T+p5T2 |
| 53 | 1−26168T+p5T2 |
| 59 | 1+3932T+p5T2 |
| 61 | 1−48740T+p5T2 |
| 67 | 1+44832T+p5T2 |
| 71 | 1−63736T+p5T2 |
| 73 | 1+60470T+p5T2 |
| 79 | 1+43721T+p5T2 |
| 83 | 1+1172pT+p5T2 |
| 89 | 1+45560T+p5T2 |
| 97 | 1−57295T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06946045990873309741306223506, −9.008714711326159717011128606890, −8.576298291749840449319879406820, −7.55116738608735753244862317396, −6.85931802459737413477618739223, −5.52708750154168906910146212207, −4.33216611808213363172542923865, −2.92884824972011609889419047376, −2.21876074194027474424678774896, −0.49528892512479640959912457415,
0.49528892512479640959912457415, 2.21876074194027474424678774896, 2.92884824972011609889419047376, 4.33216611808213363172542923865, 5.52708750154168906910146212207, 6.85931802459737413477618739223, 7.55116738608735753244862317396, 8.576298291749840449319879406820, 9.008714711326159717011128606890, 10.06946045990873309741306223506