Properties

Label 2-490-1.1-c5-0-5
Degree $2$
Conductor $490$
Sign $1$
Analytic cond. $78.5880$
Root an. cond. $8.86499$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s − 25·5-s − 36·6-s − 64·8-s − 162·9-s + 100·10-s − 187·11-s + 144·12-s − 627·13-s − 225·15-s + 256·16-s − 1.81e3·17-s + 648·18-s − 258·19-s − 400·20-s + 748·22-s + 2.97e3·23-s − 576·24-s + 625·25-s + 2.50e3·26-s − 3.64e3·27-s + 1.29e3·29-s + 900·30-s − 1.91e3·31-s − 1.02e3·32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.465·11-s + 0.288·12-s − 1.02·13-s − 0.258·15-s + 1/4·16-s − 1.52·17-s + 0.471·18-s − 0.163·19-s − 0.223·20-s + 0.329·22-s + 1.17·23-s − 0.204·24-s + 1/5·25-s + 0.727·26-s − 0.962·27-s + 0.286·29-s + 0.182·30-s − 0.358·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(490\)    =    \(2 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.5880\)
Root analytic conductor: \(8.86499\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 490,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9233279383\)
\(L(\frac12)\) \(\approx\) \(0.9233279383\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
5 \( 1 + p^{2} T \)
7 \( 1 \)
good3 \( 1 - p^{2} T + p^{5} T^{2} \)
11 \( 1 + 17 p T + p^{5} T^{2} \)
13 \( 1 + 627 T + p^{5} T^{2} \)
17 \( 1 + 1813 T + p^{5} T^{2} \)
19 \( 1 + 258 T + p^{5} T^{2} \)
23 \( 1 - 2970 T + p^{5} T^{2} \)
29 \( 1 - 1299 T + p^{5} T^{2} \)
31 \( 1 + 1916 T + p^{5} T^{2} \)
37 \( 1 - 6578 T + p^{5} T^{2} \)
41 \( 1 + 6676 T + p^{5} T^{2} \)
43 \( 1 - 3178 T + p^{5} T^{2} \)
47 \( 1 - 22001 T + p^{5} T^{2} \)
53 \( 1 - 26168 T + p^{5} T^{2} \)
59 \( 1 + 3932 T + p^{5} T^{2} \)
61 \( 1 - 48740 T + p^{5} T^{2} \)
67 \( 1 + 44832 T + p^{5} T^{2} \)
71 \( 1 - 63736 T + p^{5} T^{2} \)
73 \( 1 + 60470 T + p^{5} T^{2} \)
79 \( 1 + 43721 T + p^{5} T^{2} \)
83 \( 1 + 1172 p T + p^{5} T^{2} \)
89 \( 1 + 45560 T + p^{5} T^{2} \)
97 \( 1 - 57295 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06946045990873309741306223506, −9.008714711326159717011128606890, −8.576298291749840449319879406820, −7.55116738608735753244862317396, −6.85931802459737413477618739223, −5.52708750154168906910146212207, −4.33216611808213363172542923865, −2.92884824972011609889419047376, −2.21876074194027474424678774896, −0.49528892512479640959912457415, 0.49528892512479640959912457415, 2.21876074194027474424678774896, 2.92884824972011609889419047376, 4.33216611808213363172542923865, 5.52708750154168906910146212207, 6.85931802459737413477618739223, 7.55116738608735753244862317396, 8.576298291749840449319879406820, 9.008714711326159717011128606890, 10.06946045990873309741306223506

Graph of the $Z$-function along the critical line