L(s) = 1 | + 2i·5-s − 4i·11-s + 2i·13-s − 2·17-s + 4i·19-s − 8·23-s + 25-s + 6i·29-s + 8·31-s + 6i·37-s − 6·41-s + 4i·43-s − 7·49-s + 2i·53-s + 8·55-s + ⋯ |
L(s) = 1 | + 0.894i·5-s − 1.20i·11-s + 0.554i·13-s − 0.485·17-s + 0.917i·19-s − 1.66·23-s + 0.200·25-s + 1.11i·29-s + 1.43·31-s + 0.986i·37-s − 0.937·41-s + 0.609i·43-s − 49-s + 0.274i·53-s + 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9732684211\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9732684211\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 2iT - 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 4iT - 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 - 4iT - 19T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 - 6iT - 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 2iT - 53T^{2} \) |
| 59 | \( 1 + 4iT - 59T^{2} \) |
| 61 | \( 1 - 2iT - 61T^{2} \) |
| 67 | \( 1 - 4iT - 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + 10T + 73T^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 - 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.293519915764770492117794630436, −8.356040830883049492056128192654, −7.938371580462713834192878948760, −6.68218875941622221512850966157, −6.42217389574043078852694510307, −5.48503749812980556220380432607, −4.37885171867923715420089821869, −3.46762236550596602135600270505, −2.71995460686128039692108259734, −1.47608256025237012465449908004,
0.32496190451294687638815284237, 1.74000517821645087039298278051, 2.69099411753690930833341423639, 4.09953842333755903220408327640, 4.63388429120213377479475858963, 5.45088594781412998577898714603, 6.39646513753830288613233671949, 7.20838689010361996648963147661, 8.094825131228622968700602592412, 8.607220065156048829403997413640