L(s) = 1 | + 2i·5-s − 4i·11-s + 2i·13-s − 2·17-s + 4i·19-s − 8·23-s + 25-s + 6i·29-s + 8·31-s + 6i·37-s − 6·41-s + 4i·43-s − 7·49-s + 2i·53-s + 8·55-s + ⋯ |
L(s) = 1 | + 0.894i·5-s − 1.20i·11-s + 0.554i·13-s − 0.485·17-s + 0.917i·19-s − 1.66·23-s + 0.200·25-s + 1.11i·29-s + 1.43·31-s + 0.986i·37-s − 0.937·41-s + 0.609i·43-s − 49-s + 0.274i·53-s + 1.07·55-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)(−0.707−0.707i)Λ(2−s)
Λ(s)=(=(2304s/2ΓC(s+1/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2304
= 28⋅32
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
18.3975 |
Root analytic conductor: |
4.28923 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2304(1153,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2304, ( :1/2), −0.707−0.707i)
|
Particular Values
L(1) |
≈ |
0.9732684211 |
L(21) |
≈ |
0.9732684211 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−2iT−5T2 |
| 7 | 1+7T2 |
| 11 | 1+4iT−11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+8T+23T2 |
| 29 | 1−6iT−29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1−2iT−53T2 |
| 59 | 1+4iT−59T2 |
| 61 | 1−2iT−61T2 |
| 67 | 1−4iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1+10T+73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.293519915764770492117794630436, −8.356040830883049492056128192654, −7.938371580462713834192878948760, −6.68218875941622221512850966157, −6.42217389574043078852694510307, −5.48503749812980556220380432607, −4.37885171867923715420089821869, −3.46762236550596602135600270505, −2.71995460686128039692108259734, −1.47608256025237012465449908004,
0.32496190451294687638815284237, 1.74000517821645087039298278051, 2.69099411753690930833341423639, 4.09953842333755903220408327640, 4.63388429120213377479475858963, 5.45088594781412998577898714603, 6.39646513753830288613233671949, 7.20838689010361996648963147661, 8.094825131228622968700602592412, 8.607220065156048829403997413640