L(s) = 1 | + (−0.965 − 0.258i)3-s + (−0.366 − 1.36i)5-s + (−0.707 − 1.22i)7-s + (0.866 + 0.499i)9-s + (0.258 − 0.965i)11-s + 1.41i·15-s + 17-s + (0.707 − 0.707i)19-s + (0.366 + 1.36i)21-s + (−0.866 + 0.5i)25-s + (−0.707 − 0.707i)27-s + (0.366 − 1.36i)29-s + (−0.499 + 0.866i)33-s + (−1.41 + 1.41i)35-s + (−1 + i)37-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)3-s + (−0.366 − 1.36i)5-s + (−0.707 − 1.22i)7-s + (0.866 + 0.499i)9-s + (0.258 − 0.965i)11-s + 1.41i·15-s + 17-s + (0.707 − 0.707i)19-s + (0.366 + 1.36i)21-s + (−0.866 + 0.5i)25-s + (−0.707 − 0.707i)27-s + (0.366 − 1.36i)29-s + (−0.499 + 0.866i)33-s + (−1.41 + 1.41i)35-s + (−1 + i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6612500389\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6612500389\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.965 + 0.258i)T \) |
good | 5 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + 2iT - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.768448930994648710966615889390, −8.011067377124768621014718770687, −7.27216004711330503321539756481, −6.48798390166178623419576053464, −5.65583975000493913749754121238, −4.88857928000784218077219277490, −4.14045870266340480279604753044, −3.25355983149810943388192387045, −1.27512592687237625361779638423, −0.58444938326949772310230701514,
1.82457131599065628903174205485, 3.13653009476224720845955724354, 3.65352161979215552104520098143, 5.00710147469265392815892483693, 5.65693096708500639785170281440, 6.49447534062750375247719661114, 7.00487611827268991593338446766, 7.74888779798096049623335454626, 8.992922389122785110147053585792, 9.730897015257244895176002541509