L(s) = 1 | − 6·5-s + 21.1·7-s + 42.3·11-s + 20·13-s + 8·17-s − 84.6·19-s − 169.·23-s − 89·25-s + 46·29-s + 21.1·31-s − 126.·35-s − 164·37-s + 312·41-s − 423.·43-s − 169.·47-s + 105.·49-s − 266·53-s − 253.·55-s − 253.·59-s − 132·61-s − 120·65-s − 507.·67-s + 677.·71-s + 246·73-s + 896.·77-s − 232.·79-s + 973.·83-s + ⋯ |
L(s) = 1 | − 0.536·5-s + 1.14·7-s + 1.16·11-s + 0.426·13-s + 0.114·17-s − 1.02·19-s − 1.53·23-s − 0.711·25-s + 0.294·29-s + 0.122·31-s − 0.613·35-s − 0.728·37-s + 1.18·41-s − 1.50·43-s − 0.525·47-s + 0.306·49-s − 0.689·53-s − 0.622·55-s − 0.560·59-s − 0.277·61-s − 0.228·65-s − 0.926·67-s + 1.13·71-s + 0.394·73-s + 1.32·77-s − 0.331·79-s + 1.28·83-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(2304s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+6T+125T2 |
| 7 | 1−21.1T+343T2 |
| 11 | 1−42.3T+1.33e3T2 |
| 13 | 1−20T+2.19e3T2 |
| 17 | 1−8T+4.91e3T2 |
| 19 | 1+84.6T+6.85e3T2 |
| 23 | 1+169.T+1.21e4T2 |
| 29 | 1−46T+2.43e4T2 |
| 31 | 1−21.1T+2.97e4T2 |
| 37 | 1+164T+5.06e4T2 |
| 41 | 1−312T+6.89e4T2 |
| 43 | 1+423.T+7.95e4T2 |
| 47 | 1+169.T+1.03e5T2 |
| 53 | 1+266T+1.48e5T2 |
| 59 | 1+253.T+2.05e5T2 |
| 61 | 1+132T+2.26e5T2 |
| 67 | 1+507.T+3.00e5T2 |
| 71 | 1−677.T+3.57e5T2 |
| 73 | 1−246T+3.89e5T2 |
| 79 | 1+232.T+4.93e5T2 |
| 83 | 1−973.T+5.71e5T2 |
| 89 | 1−1.39e3T+7.04e5T2 |
| 97 | 1+302T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.151983544079724472110008609149, −7.77092133738538295394211340733, −6.62444761569389701250182031264, −6.05368044855299303696892849446, −4.92522210563609866280458026059, −4.17708255379714852694468200092, −3.57012330100525943800995470349, −2.09107140383675182861094831733, −1.35637473763195318488072520121, 0,
1.35637473763195318488072520121, 2.09107140383675182861094831733, 3.57012330100525943800995470349, 4.17708255379714852694468200092, 4.92522210563609866280458026059, 6.05368044855299303696892849446, 6.62444761569389701250182031264, 7.77092133738538295394211340733, 8.151983544079724472110008609149