L(s) = 1 | − 3.46·5-s − 3.46·7-s − 6·17-s + 4·19-s − 6.92·23-s + 6.99·25-s + 3.46·29-s − 3.46·31-s + 11.9·35-s − 6.92·37-s − 6·41-s + 4·43-s + 6.92·47-s + 4.99·49-s + 3.46·53-s + 12·59-s + 6.92·61-s − 4·67-s + 6.92·71-s − 2·73-s + 10.3·79-s + 20.7·85-s + 6·89-s − 13.8·95-s − 2·97-s + 3.46·101-s + 17.3·103-s + ⋯ |
L(s) = 1 | − 1.54·5-s − 1.30·7-s − 1.45·17-s + 0.917·19-s − 1.44·23-s + 1.39·25-s + 0.643·29-s − 0.622·31-s + 2.02·35-s − 1.13·37-s − 0.937·41-s + 0.609·43-s + 1.01·47-s + 0.714·49-s + 0.475·53-s + 1.56·59-s + 0.887·61-s − 0.488·67-s + 0.822·71-s − 0.234·73-s + 1.16·79-s + 2.25·85-s + 0.635·89-s − 1.42·95-s − 0.203·97-s + 0.344·101-s + 1.70·103-s + ⋯ |
Λ(s)=(=(2304s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2304s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5951342816 |
L(21) |
≈ |
0.5951342816 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+3.46T+5T2 |
| 7 | 1+3.46T+7T2 |
| 11 | 1+11T2 |
| 13 | 1+13T2 |
| 17 | 1+6T+17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+6.92T+23T2 |
| 29 | 1−3.46T+29T2 |
| 31 | 1+3.46T+31T2 |
| 37 | 1+6.92T+37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1−6.92T+47T2 |
| 53 | 1−3.46T+53T2 |
| 59 | 1−12T+59T2 |
| 61 | 1−6.92T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1−6.92T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1−10.3T+79T2 |
| 83 | 1+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.872238150144058509099300033791, −8.297128464064606045304138325176, −7.33661936490695083674831742076, −6.87296624703370658242518001585, −6.00748604342774431415303044952, −4.89148071841182910687091315400, −3.88816374686518382818613341114, −3.50402801172082537256356145911, −2.34522358440884180999113886745, −0.47076910174565786246861024592,
0.47076910174565786246861024592, 2.34522358440884180999113886745, 3.50402801172082537256356145911, 3.88816374686518382818613341114, 4.89148071841182910687091315400, 6.00748604342774431415303044952, 6.87296624703370658242518001585, 7.33661936490695083674831742076, 8.297128464064606045304138325176, 8.872238150144058509099300033791