Properties

Label 2-48e2-1.1-c1-0-1
Degree $2$
Conductor $2304$
Sign $1$
Analytic cond. $18.3975$
Root an. cond. $4.28923$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46·5-s − 3.46·7-s − 6·17-s + 4·19-s − 6.92·23-s + 6.99·25-s + 3.46·29-s − 3.46·31-s + 11.9·35-s − 6.92·37-s − 6·41-s + 4·43-s + 6.92·47-s + 4.99·49-s + 3.46·53-s + 12·59-s + 6.92·61-s − 4·67-s + 6.92·71-s − 2·73-s + 10.3·79-s + 20.7·85-s + 6·89-s − 13.8·95-s − 2·97-s + 3.46·101-s + 17.3·103-s + ⋯
L(s)  = 1  − 1.54·5-s − 1.30·7-s − 1.45·17-s + 0.917·19-s − 1.44·23-s + 1.39·25-s + 0.643·29-s − 0.622·31-s + 2.02·35-s − 1.13·37-s − 0.937·41-s + 0.609·43-s + 1.01·47-s + 0.714·49-s + 0.475·53-s + 1.56·59-s + 0.887·61-s − 0.488·67-s + 0.822·71-s − 0.234·73-s + 1.16·79-s + 2.25·85-s + 0.635·89-s − 1.42·95-s − 0.203·97-s + 0.344·101-s + 1.70·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2304\)    =    \(2^{8} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(18.3975\)
Root analytic conductor: \(4.28923\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2304,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5951342816\)
\(L(\frac12)\) \(\approx\) \(0.5951342816\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 3.46T + 5T^{2} \)
7 \( 1 + 3.46T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 + 6.92T + 23T^{2} \)
29 \( 1 - 3.46T + 29T^{2} \)
31 \( 1 + 3.46T + 31T^{2} \)
37 \( 1 + 6.92T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 6.92T + 47T^{2} \)
53 \( 1 - 3.46T + 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 - 6.92T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 6.92T + 71T^{2} \)
73 \( 1 + 2T + 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.872238150144058509099300033791, −8.297128464064606045304138325176, −7.33661936490695083674831742076, −6.87296624703370658242518001585, −6.00748604342774431415303044952, −4.89148071841182910687091315400, −3.88816374686518382818613341114, −3.50402801172082537256356145911, −2.34522358440884180999113886745, −0.47076910174565786246861024592, 0.47076910174565786246861024592, 2.34522358440884180999113886745, 3.50402801172082537256356145911, 3.88816374686518382818613341114, 4.89148071841182910687091315400, 6.00748604342774431415303044952, 6.87296624703370658242518001585, 7.33661936490695083674831742076, 8.297128464064606045304138325176, 8.872238150144058509099300033791

Graph of the $Z$-function along the critical line