L(s) = 1 | − 3.46·5-s − 3.46·7-s − 6·17-s + 4·19-s − 6.92·23-s + 6.99·25-s + 3.46·29-s − 3.46·31-s + 11.9·35-s − 6.92·37-s − 6·41-s + 4·43-s + 6.92·47-s + 4.99·49-s + 3.46·53-s + 12·59-s + 6.92·61-s − 4·67-s + 6.92·71-s − 2·73-s + 10.3·79-s + 20.7·85-s + 6·89-s − 13.8·95-s − 2·97-s + 3.46·101-s + 17.3·103-s + ⋯ |
L(s) = 1 | − 1.54·5-s − 1.30·7-s − 1.45·17-s + 0.917·19-s − 1.44·23-s + 1.39·25-s + 0.643·29-s − 0.622·31-s + 2.02·35-s − 1.13·37-s − 0.937·41-s + 0.609·43-s + 1.01·47-s + 0.714·49-s + 0.475·53-s + 1.56·59-s + 0.887·61-s − 0.488·67-s + 0.822·71-s − 0.234·73-s + 1.16·79-s + 2.25·85-s + 0.635·89-s − 1.42·95-s − 0.203·97-s + 0.344·101-s + 1.70·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5951342816\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5951342816\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 3.46T + 5T^{2} \) |
| 7 | \( 1 + 3.46T + 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + 6.92T + 23T^{2} \) |
| 29 | \( 1 - 3.46T + 29T^{2} \) |
| 31 | \( 1 + 3.46T + 31T^{2} \) |
| 37 | \( 1 + 6.92T + 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 - 6.92T + 47T^{2} \) |
| 53 | \( 1 - 3.46T + 53T^{2} \) |
| 59 | \( 1 - 12T + 59T^{2} \) |
| 61 | \( 1 - 6.92T + 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 - 6.92T + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 - 10.3T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.872238150144058509099300033791, −8.297128464064606045304138325176, −7.33661936490695083674831742076, −6.87296624703370658242518001585, −6.00748604342774431415303044952, −4.89148071841182910687091315400, −3.88816374686518382818613341114, −3.50402801172082537256356145911, −2.34522358440884180999113886745, −0.47076910174565786246861024592,
0.47076910174565786246861024592, 2.34522358440884180999113886745, 3.50402801172082537256356145911, 3.88816374686518382818613341114, 4.89148071841182910687091315400, 6.00748604342774431415303044952, 6.87296624703370658242518001585, 7.33661936490695083674831742076, 8.297128464064606045304138325176, 8.872238150144058509099300033791