Properties

Label 2-486-1.1-c5-0-49
Degree $2$
Conductor $486$
Sign $-1$
Analytic cond. $77.9465$
Root an. cond. $8.82873$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 81·5-s − 58·7-s − 64·8-s − 324·10-s + 300·11-s − 16·13-s + 232·14-s + 256·16-s − 222·17-s − 1.90e3·19-s + 1.29e3·20-s − 1.20e3·22-s − 1.60e3·23-s + 3.43e3·25-s + 64·26-s − 928·28-s − 2.37e3·29-s − 3.55e3·31-s − 1.02e3·32-s + 888·34-s − 4.69e3·35-s − 9.91e3·37-s + 7.61e3·38-s − 5.18e3·40-s − 9.77e3·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.44·5-s − 0.447·7-s − 0.353·8-s − 1.02·10-s + 0.747·11-s − 0.0262·13-s + 0.316·14-s + 1/4·16-s − 0.186·17-s − 1.20·19-s + 0.724·20-s − 0.528·22-s − 0.632·23-s + 1.09·25-s + 0.0185·26-s − 0.223·28-s − 0.523·29-s − 0.663·31-s − 0.176·32-s + 0.131·34-s − 0.648·35-s − 1.19·37-s + 0.855·38-s − 0.512·40-s − 0.908·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(486\)    =    \(2 \cdot 3^{5}\)
Sign: $-1$
Analytic conductor: \(77.9465\)
Root analytic conductor: \(8.82873\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 486,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 \)
good5 \( 1 - 81 T + p^{5} T^{2} \)
7 \( 1 + 58 T + p^{5} T^{2} \)
11 \( 1 - 300 T + p^{5} T^{2} \)
13 \( 1 + 16 T + p^{5} T^{2} \)
17 \( 1 + 222 T + p^{5} T^{2} \)
19 \( 1 + 1903 T + p^{5} T^{2} \)
23 \( 1 + 1605 T + p^{5} T^{2} \)
29 \( 1 + 2373 T + p^{5} T^{2} \)
31 \( 1 + 3550 T + p^{5} T^{2} \)
37 \( 1 + 268 p T + p^{5} T^{2} \)
41 \( 1 + 9774 T + p^{5} T^{2} \)
43 \( 1 - 17876 T + p^{5} T^{2} \)
47 \( 1 + 23439 T + p^{5} T^{2} \)
53 \( 1 + 18489 T + p^{5} T^{2} \)
59 \( 1 - 19356 T + p^{5} T^{2} \)
61 \( 1 + 20902 T + p^{5} T^{2} \)
67 \( 1 - 48437 T + p^{5} T^{2} \)
71 \( 1 - 15465 T + p^{5} T^{2} \)
73 \( 1 - 84017 T + p^{5} T^{2} \)
79 \( 1 - 90080 T + p^{5} T^{2} \)
83 \( 1 + 104574 T + p^{5} T^{2} \)
89 \( 1 - 46020 T + p^{5} T^{2} \)
97 \( 1 - 73583 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.608727492868307150333137122237, −9.112159461625729039461047409237, −8.112209039345582031737177616232, −6.71450745824809083795442645333, −6.30533537706078353856531459466, −5.23100278739501974952985442507, −3.69681938205087118188699401970, −2.28263878449479121771075700529, −1.53559827065362487201359296670, 0, 1.53559827065362487201359296670, 2.28263878449479121771075700529, 3.69681938205087118188699401970, 5.23100278739501974952985442507, 6.30533537706078353856531459466, 6.71450745824809083795442645333, 8.112209039345582031737177616232, 9.112159461625729039461047409237, 9.608727492868307150333137122237

Graph of the $Z$-function along the critical line