L(s) = 1 | + 0.294·3-s + 5-s + 4.39·7-s − 2.91·9-s − 5.96·13-s + 0.294·15-s + 1.66·17-s − 7.69·19-s + 1.29·21-s − 0.904·23-s + 25-s − 1.74·27-s + 4.73·29-s − 5.12·31-s + 4.39·35-s − 0.184·37-s − 1.75·39-s + 2.62·41-s − 3.59·43-s − 2.91·45-s − 0.776·47-s + 12.2·49-s + 0.491·51-s − 9.59·53-s − 2.26·57-s − 11.2·59-s − 13.1·61-s + ⋯ |
L(s) = 1 | + 0.170·3-s + 0.447·5-s + 1.65·7-s − 0.970·9-s − 1.65·13-s + 0.0761·15-s + 0.404·17-s − 1.76·19-s + 0.282·21-s − 0.188·23-s + 0.200·25-s − 0.335·27-s + 0.880·29-s − 0.920·31-s + 0.742·35-s − 0.0304·37-s − 0.281·39-s + 0.409·41-s − 0.548·43-s − 0.434·45-s − 0.113·47-s + 1.75·49-s + 0.0688·51-s − 1.31·53-s − 0.300·57-s − 1.46·59-s − 1.68·61-s + ⋯ |
Λ(s)=(=(4840s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4840s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 11 | 1 |
good | 3 | 1−0.294T+3T2 |
| 7 | 1−4.39T+7T2 |
| 13 | 1+5.96T+13T2 |
| 17 | 1−1.66T+17T2 |
| 19 | 1+7.69T+19T2 |
| 23 | 1+0.904T+23T2 |
| 29 | 1−4.73T+29T2 |
| 31 | 1+5.12T+31T2 |
| 37 | 1+0.184T+37T2 |
| 41 | 1−2.62T+41T2 |
| 43 | 1+3.59T+43T2 |
| 47 | 1+0.776T+47T2 |
| 53 | 1+9.59T+53T2 |
| 59 | 1+11.2T+59T2 |
| 61 | 1+13.1T+61T2 |
| 67 | 1+7.79T+67T2 |
| 71 | 1+6.97T+71T2 |
| 73 | 1+12.7T+73T2 |
| 79 | 1−10.0T+79T2 |
| 83 | 1+4.09T+83T2 |
| 89 | 1+0.466T+89T2 |
| 97 | 1−7.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84566801402113528265155240969, −7.48199636503386561344045474801, −6.34847206348759981062453655963, −5.69741222197338606129086820326, −4.74665164591068857611148800468, −4.57516014815393567223352252220, −3.12815055525495291451958033175, −2.27158304820024163044189897424, −1.65009302910992829969571358442, 0,
1.65009302910992829969571358442, 2.27158304820024163044189897424, 3.12815055525495291451958033175, 4.57516014815393567223352252220, 4.74665164591068857611148800468, 5.69741222197338606129086820326, 6.34847206348759981062453655963, 7.48199636503386561344045474801, 7.84566801402113528265155240969