L(s) = 1 | + 0.294·3-s + 5-s + 4.39·7-s − 2.91·9-s − 5.96·13-s + 0.294·15-s + 1.66·17-s − 7.69·19-s + 1.29·21-s − 0.904·23-s + 25-s − 1.74·27-s + 4.73·29-s − 5.12·31-s + 4.39·35-s − 0.184·37-s − 1.75·39-s + 2.62·41-s − 3.59·43-s − 2.91·45-s − 0.776·47-s + 12.2·49-s + 0.491·51-s − 9.59·53-s − 2.26·57-s − 11.2·59-s − 13.1·61-s + ⋯ |
L(s) = 1 | + 0.170·3-s + 0.447·5-s + 1.65·7-s − 0.970·9-s − 1.65·13-s + 0.0761·15-s + 0.404·17-s − 1.76·19-s + 0.282·21-s − 0.188·23-s + 0.200·25-s − 0.335·27-s + 0.880·29-s − 0.920·31-s + 0.742·35-s − 0.0304·37-s − 0.281·39-s + 0.409·41-s − 0.548·43-s − 0.434·45-s − 0.113·47-s + 1.75·49-s + 0.0688·51-s − 1.31·53-s − 0.300·57-s − 1.46·59-s − 1.68·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 - 0.294T + 3T^{2} \) |
| 7 | \( 1 - 4.39T + 7T^{2} \) |
| 13 | \( 1 + 5.96T + 13T^{2} \) |
| 17 | \( 1 - 1.66T + 17T^{2} \) |
| 19 | \( 1 + 7.69T + 19T^{2} \) |
| 23 | \( 1 + 0.904T + 23T^{2} \) |
| 29 | \( 1 - 4.73T + 29T^{2} \) |
| 31 | \( 1 + 5.12T + 31T^{2} \) |
| 37 | \( 1 + 0.184T + 37T^{2} \) |
| 41 | \( 1 - 2.62T + 41T^{2} \) |
| 43 | \( 1 + 3.59T + 43T^{2} \) |
| 47 | \( 1 + 0.776T + 47T^{2} \) |
| 53 | \( 1 + 9.59T + 53T^{2} \) |
| 59 | \( 1 + 11.2T + 59T^{2} \) |
| 61 | \( 1 + 13.1T + 61T^{2} \) |
| 67 | \( 1 + 7.79T + 67T^{2} \) |
| 71 | \( 1 + 6.97T + 71T^{2} \) |
| 73 | \( 1 + 12.7T + 73T^{2} \) |
| 79 | \( 1 - 10.0T + 79T^{2} \) |
| 83 | \( 1 + 4.09T + 83T^{2} \) |
| 89 | \( 1 + 0.466T + 89T^{2} \) |
| 97 | \( 1 - 7.09T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.84566801402113528265155240969, −7.48199636503386561344045474801, −6.34847206348759981062453655963, −5.69741222197338606129086820326, −4.74665164591068857611148800468, −4.57516014815393567223352252220, −3.12815055525495291451958033175, −2.27158304820024163044189897424, −1.65009302910992829969571358442, 0,
1.65009302910992829969571358442, 2.27158304820024163044189897424, 3.12815055525495291451958033175, 4.57516014815393567223352252220, 4.74665164591068857611148800468, 5.69741222197338606129086820326, 6.34847206348759981062453655963, 7.48199636503386561344045474801, 7.84566801402113528265155240969