L(s) = 1 | + 2.56·3-s − 5-s − 4.56·7-s + 3.56·9-s + 1.12·13-s − 2.56·15-s + 7.68·17-s − 1.43·19-s − 11.6·21-s + 1.12·23-s + 25-s + 1.43·27-s − 8.56·29-s − 1.43·31-s + 4.56·35-s + 7.43·37-s + 2.87·39-s + 12.2·41-s + 3.12·43-s − 3.56·45-s − 11.3·47-s + 13.8·49-s + 19.6·51-s + 9.68·53-s − 3.68·57-s + 1.12·59-s + 12.5·61-s + ⋯ |
L(s) = 1 | + 1.47·3-s − 0.447·5-s − 1.72·7-s + 1.18·9-s + 0.311·13-s − 0.661·15-s + 1.86·17-s − 0.330·19-s − 2.54·21-s + 0.234·23-s + 0.200·25-s + 0.276·27-s − 1.58·29-s − 0.258·31-s + 0.771·35-s + 1.22·37-s + 0.460·39-s + 1.91·41-s + 0.476·43-s − 0.530·45-s − 1.65·47-s + 1.97·49-s + 2.75·51-s + 1.33·53-s − 0.488·57-s + 0.146·59-s + 1.60·61-s + ⋯ |
Λ(s)=(=(4840s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4840s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.535312653 |
L(21) |
≈ |
2.535312653 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 11 | 1 |
good | 3 | 1−2.56T+3T2 |
| 7 | 1+4.56T+7T2 |
| 13 | 1−1.12T+13T2 |
| 17 | 1−7.68T+17T2 |
| 19 | 1+1.43T+19T2 |
| 23 | 1−1.12T+23T2 |
| 29 | 1+8.56T+29T2 |
| 31 | 1+1.43T+31T2 |
| 37 | 1−7.43T+37T2 |
| 41 | 1−12.2T+41T2 |
| 43 | 1−3.12T+43T2 |
| 47 | 1+11.3T+47T2 |
| 53 | 1−9.68T+53T2 |
| 59 | 1−1.12T+59T2 |
| 61 | 1−12.5T+61T2 |
| 67 | 1+67T2 |
| 71 | 1−3.68T+71T2 |
| 73 | 1+1.12T+73T2 |
| 79 | 1−11.3T+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1−9.68T+89T2 |
| 97 | 1+4.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.192867505434845688401446029270, −7.67278783161813013540747539820, −7.07351747991955619339429976468, −6.16149101367801538889825010866, −5.47449664398454380934839962458, −4.04834404435399700897344942493, −3.59446625467074219122793148662, −3.04590249400907629988524953309, −2.23907318683614832488887099808, −0.804036707494051472523679283186,
0.804036707494051472523679283186, 2.23907318683614832488887099808, 3.04590249400907629988524953309, 3.59446625467074219122793148662, 4.04834404435399700897344942493, 5.47449664398454380934839962458, 6.16149101367801538889825010866, 7.07351747991955619339429976468, 7.67278783161813013540747539820, 8.192867505434845688401446029270