Properties

Label 2-4840-1.1-c1-0-33
Degree $2$
Conductor $4840$
Sign $1$
Analytic cond. $38.6475$
Root an. cond. $6.21671$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s − 5-s − 4.56·7-s + 3.56·9-s + 1.12·13-s − 2.56·15-s + 7.68·17-s − 1.43·19-s − 11.6·21-s + 1.12·23-s + 25-s + 1.43·27-s − 8.56·29-s − 1.43·31-s + 4.56·35-s + 7.43·37-s + 2.87·39-s + 12.2·41-s + 3.12·43-s − 3.56·45-s − 11.3·47-s + 13.8·49-s + 19.6·51-s + 9.68·53-s − 3.68·57-s + 1.12·59-s + 12.5·61-s + ⋯
L(s)  = 1  + 1.47·3-s − 0.447·5-s − 1.72·7-s + 1.18·9-s + 0.311·13-s − 0.661·15-s + 1.86·17-s − 0.330·19-s − 2.54·21-s + 0.234·23-s + 0.200·25-s + 0.276·27-s − 1.58·29-s − 0.258·31-s + 0.771·35-s + 1.22·37-s + 0.460·39-s + 1.91·41-s + 0.476·43-s − 0.530·45-s − 1.65·47-s + 1.97·49-s + 2.75·51-s + 1.33·53-s − 0.488·57-s + 0.146·59-s + 1.60·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4840\)    =    \(2^{3} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(38.6475\)
Root analytic conductor: \(6.21671\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.535312653\)
\(L(\frac12)\) \(\approx\) \(2.535312653\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good3 \( 1 - 2.56T + 3T^{2} \)
7 \( 1 + 4.56T + 7T^{2} \)
13 \( 1 - 1.12T + 13T^{2} \)
17 \( 1 - 7.68T + 17T^{2} \)
19 \( 1 + 1.43T + 19T^{2} \)
23 \( 1 - 1.12T + 23T^{2} \)
29 \( 1 + 8.56T + 29T^{2} \)
31 \( 1 + 1.43T + 31T^{2} \)
37 \( 1 - 7.43T + 37T^{2} \)
41 \( 1 - 12.2T + 41T^{2} \)
43 \( 1 - 3.12T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 - 9.68T + 53T^{2} \)
59 \( 1 - 1.12T + 59T^{2} \)
61 \( 1 - 12.5T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 - 3.68T + 71T^{2} \)
73 \( 1 + 1.12T + 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 9.68T + 89T^{2} \)
97 \( 1 + 4.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.192867505434845688401446029270, −7.67278783161813013540747539820, −7.07351747991955619339429976468, −6.16149101367801538889825010866, −5.47449664398454380934839962458, −4.04834404435399700897344942493, −3.59446625467074219122793148662, −3.04590249400907629988524953309, −2.23907318683614832488887099808, −0.804036707494051472523679283186, 0.804036707494051472523679283186, 2.23907318683614832488887099808, 3.04590249400907629988524953309, 3.59446625467074219122793148662, 4.04834404435399700897344942493, 5.47449664398454380934839962458, 6.16149101367801538889825010866, 7.07351747991955619339429976468, 7.67278783161813013540747539820, 8.192867505434845688401446029270

Graph of the $Z$-function along the critical line