Properties

Label 2-483-161.66-c1-0-5
Degree $2$
Conductor $483$
Sign $-0.634 - 0.772i$
Analytic cond. $3.85677$
Root an. cond. $1.96386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.230 − 0.180i)2-s + (−0.814 + 0.580i)3-s + (−0.451 + 1.86i)4-s + (−1.27 − 0.245i)5-s + (−0.0824 + 0.280i)6-s + (2.61 + 0.430i)7-s + (0.475 + 1.04i)8-s + (0.327 − 0.945i)9-s + (−0.337 + 0.173i)10-s + (0.611 − 0.778i)11-s + (−0.711 − 1.77i)12-s + (−2.09 + 3.25i)13-s + (0.678 − 0.373i)14-s + (1.18 − 0.538i)15-s + (−3.10 − 1.60i)16-s + (−4.95 + 4.72i)17-s + ⋯
L(s)  = 1  + (0.162 − 0.127i)2-s + (−0.470 + 0.334i)3-s + (−0.225 + 0.930i)4-s + (−0.569 − 0.109i)5-s + (−0.0336 + 0.114i)6-s + (0.986 + 0.162i)7-s + (0.168 + 0.368i)8-s + (0.109 − 0.315i)9-s + (−0.106 + 0.0550i)10-s + (0.184 − 0.234i)11-s + (−0.205 − 0.513i)12-s + (−0.580 + 0.903i)13-s + (0.181 − 0.0997i)14-s + (0.304 − 0.139i)15-s + (−0.776 − 0.400i)16-s + (−1.20 + 1.14i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.634 - 0.772i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 483 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.634 - 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(483\)    =    \(3 \cdot 7 \cdot 23\)
Sign: $-0.634 - 0.772i$
Analytic conductor: \(3.85677\)
Root analytic conductor: \(1.96386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{483} (388, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 483,\ (\ :1/2),\ -0.634 - 0.772i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.384991 + 0.814335i\)
\(L(\frac12)\) \(\approx\) \(0.384991 + 0.814335i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.814 - 0.580i)T \)
7 \( 1 + (-2.61 - 0.430i)T \)
23 \( 1 + (3.75 + 2.97i)T \)
good2 \( 1 + (-0.230 + 0.180i)T + (0.471 - 1.94i)T^{2} \)
5 \( 1 + (1.27 + 0.245i)T + (4.64 + 1.85i)T^{2} \)
11 \( 1 + (-0.611 + 0.778i)T + (-2.59 - 10.6i)T^{2} \)
13 \( 1 + (2.09 - 3.25i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (4.95 - 4.72i)T + (0.808 - 16.9i)T^{2} \)
19 \( 1 + (-4.13 - 3.94i)T + (0.904 + 18.9i)T^{2} \)
29 \( 1 + (4.64 + 1.36i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (0.638 - 6.69i)T + (-30.4 - 5.86i)T^{2} \)
37 \( 1 + (4.80 + 1.66i)T + (29.0 + 22.8i)T^{2} \)
41 \( 1 + (-5.07 - 4.39i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-4.50 - 2.05i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 + (-1.16 + 0.671i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-12.3 + 0.587i)T + (52.7 - 5.03i)T^{2} \)
59 \( 1 + (3.40 + 6.61i)T + (-34.2 + 48.0i)T^{2} \)
61 \( 1 + (-3.79 + 5.33i)T + (-19.9 - 57.6i)T^{2} \)
67 \( 1 + (1.03 - 2.59i)T + (-48.4 - 46.2i)T^{2} \)
71 \( 1 + (-1.06 - 7.44i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (-11.5 - 2.81i)T + (64.8 + 33.4i)T^{2} \)
79 \( 1 + (0.687 + 0.0327i)T + (78.6 + 7.50i)T^{2} \)
83 \( 1 + (-5.99 - 6.91i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (-0.895 + 0.0855i)T + (87.3 - 16.8i)T^{2} \)
97 \( 1 + (9.96 - 11.4i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46804611766550752304527590844, −10.70931566117896716346920094268, −9.420890950187493244257342448540, −8.482054650213244905812881470507, −7.85560513218925977043050230978, −6.78847655347414754633518188341, −5.45495556764770627060000078458, −4.32839661576150941726152756098, −3.85640787041558095970822217490, −2.06884253999181975749454378745, 0.54814562739479007471951097028, 2.17295768581094303309655845416, 4.13168031066517763409789670086, 5.07118882279378484286176557430, 5.74399010159317580227204909468, 7.20352633507244924952659088825, 7.53751511183862103706981379551, 8.966161773927497516474570660077, 9.828862647898291481651176209753, 10.91434180442874675375398996709

Graph of the $Z$-function along the critical line