L(s) = 1 | + 3·3-s + 5·5-s − 12·7-s + 9·9-s − 24·11-s + 38·13-s + 15·15-s − 6·17-s + 104·19-s − 36·21-s + 100·23-s + 25·25-s + 27·27-s + 230·29-s − 56·31-s − 72·33-s − 60·35-s + 190·37-s + 114·39-s + 202·41-s − 148·43-s + 45·45-s + 124·47-s − 199·49-s − 18·51-s + 206·53-s − 120·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s − 0.647·7-s + 1/3·9-s − 0.657·11-s + 0.810·13-s + 0.258·15-s − 0.0856·17-s + 1.25·19-s − 0.374·21-s + 0.906·23-s + 1/5·25-s + 0.192·27-s + 1.47·29-s − 0.324·31-s − 0.379·33-s − 0.289·35-s + 0.844·37-s + 0.468·39-s + 0.769·41-s − 0.524·43-s + 0.149·45-s + 0.384·47-s − 0.580·49-s − 0.0494·51-s + 0.533·53-s − 0.294·55-s + ⋯ |
Λ(s)=(=(480s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(480s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.558464332 |
L(21) |
≈ |
2.558464332 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 5 | 1−pT |
good | 7 | 1+12T+p3T2 |
| 11 | 1+24T+p3T2 |
| 13 | 1−38T+p3T2 |
| 17 | 1+6T+p3T2 |
| 19 | 1−104T+p3T2 |
| 23 | 1−100T+p3T2 |
| 29 | 1−230T+p3T2 |
| 31 | 1+56T+p3T2 |
| 37 | 1−190T+p3T2 |
| 41 | 1−202T+p3T2 |
| 43 | 1+148T+p3T2 |
| 47 | 1−124T+p3T2 |
| 53 | 1−206T+p3T2 |
| 59 | 1+128T+p3T2 |
| 61 | 1−190T+p3T2 |
| 67 | 1+204T+p3T2 |
| 71 | 1+440T+p3T2 |
| 73 | 1−1210T+p3T2 |
| 79 | 1−816T+p3T2 |
| 83 | 1+1412T+p3T2 |
| 89 | 1+214T+p3T2 |
| 97 | 1−1202T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.41622749054050663593390516684, −9.641939411294639579404550347131, −8.876707176376890709899324776573, −7.921304657796372278118400262727, −6.92189992030718392676078820046, −5.95122812575480884998599674005, −4.85378246152528777255751462926, −3.45768690804603567561083791554, −2.59956268418527990492689575188, −1.02473300525567783514756788390,
1.02473300525567783514756788390, 2.59956268418527990492689575188, 3.45768690804603567561083791554, 4.85378246152528777255751462926, 5.95122812575480884998599674005, 6.92189992030718392676078820046, 7.921304657796372278118400262727, 8.876707176376890709899324776573, 9.641939411294639579404550347131, 10.41622749054050663593390516684