Properties

Label 2-4788-133.132-c1-0-11
Degree $2$
Conductor $4788$
Sign $-0.997 - 0.0655i$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.58i·5-s + (0.618 + 2.57i)7-s − 1.61·11-s + 3.38·13-s + 2.57i·17-s + (−1.29 + 4.16i)19-s − 7.47·23-s + 2.47·25-s + 8.71i·29-s − 8.06·31-s + (−4.09 + 0.982i)35-s − 5.38i·37-s + 8.06·41-s − 5.70·43-s − 4.76i·47-s + ⋯
L(s)  = 1  + 0.711i·5-s + (0.233 + 0.972i)7-s − 0.487·11-s + 0.939·13-s + 0.623i·17-s + (−0.296 + 0.954i)19-s − 1.55·23-s + 0.494·25-s + 1.61i·29-s − 1.44·31-s + (−0.691 + 0.166i)35-s − 0.885i·37-s + 1.25·41-s − 0.870·43-s − 0.695i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0655i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 - 0.0655i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-0.997 - 0.0655i$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4788} (3457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -0.997 - 0.0655i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.026490598\)
\(L(\frac12)\) \(\approx\) \(1.026490598\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-0.618 - 2.57i)T \)
19 \( 1 + (1.29 - 4.16i)T \)
good5 \( 1 - 1.58iT - 5T^{2} \)
11 \( 1 + 1.61T + 11T^{2} \)
13 \( 1 - 3.38T + 13T^{2} \)
17 \( 1 - 2.57iT - 17T^{2} \)
23 \( 1 + 7.47T + 23T^{2} \)
29 \( 1 - 8.71iT - 29T^{2} \)
31 \( 1 + 8.06T + 31T^{2} \)
37 \( 1 + 5.38iT - 37T^{2} \)
41 \( 1 - 8.06T + 41T^{2} \)
43 \( 1 + 5.70T + 43T^{2} \)
47 \( 1 + 4.76iT - 47T^{2} \)
53 \( 1 + 14.0iT - 53T^{2} \)
59 \( 1 + 0.799T + 59T^{2} \)
61 \( 1 - 6.73iT - 61T^{2} \)
67 \( 1 + 2.05iT - 67T^{2} \)
71 \( 1 - 12.0iT - 71T^{2} \)
73 \( 1 + 9.30iT - 73T^{2} \)
79 \( 1 - 10.7iT - 79T^{2} \)
83 \( 1 + 2.94iT - 83T^{2} \)
89 \( 1 - 8.37T + 89T^{2} \)
97 \( 1 + 10.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.532487966313609442604740789197, −8.048621440367089008238112666359, −7.18562782552944775968411897293, −6.36016346634099301421136557927, −5.76476246758700158283968935850, −5.18384638662739013433498689293, −3.92628105030431241802483463539, −3.39859330235371063147980647975, −2.31055602034985936782372870263, −1.62239925364035530825913660853, 0.27844887143673088651115118446, 1.25168890381352421813605677205, 2.34800203479382137558233726750, 3.46189540712130906559859172605, 4.33199453649359158257995877567, 4.77206700408021423881445280411, 5.78494969188700799070515326874, 6.41743371465637730950104282349, 7.39735134761185402760823617102, 7.88778845291661389928392401598

Graph of the $Z$-function along the critical line