L(s) = 1 | + 1.58i·5-s + (0.618 + 2.57i)7-s − 1.61·11-s + 3.38·13-s + 2.57i·17-s + (−1.29 + 4.16i)19-s − 7.47·23-s + 2.47·25-s + 8.71i·29-s − 8.06·31-s + (−4.09 + 0.982i)35-s − 5.38i·37-s + 8.06·41-s − 5.70·43-s − 4.76i·47-s + ⋯ |
L(s) = 1 | + 0.711i·5-s + (0.233 + 0.972i)7-s − 0.487·11-s + 0.939·13-s + 0.623i·17-s + (−0.296 + 0.954i)19-s − 1.55·23-s + 0.494·25-s + 1.61i·29-s − 1.44·31-s + (−0.691 + 0.166i)35-s − 0.885i·37-s + 1.25·41-s − 0.870·43-s − 0.695i·47-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)(−0.997−0.0655i)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)(−0.997−0.0655i)Λ(1−s)
Degree: |
2 |
Conductor: |
4788
= 22⋅32⋅7⋅19
|
Sign: |
−0.997−0.0655i
|
Analytic conductor: |
38.2323 |
Root analytic conductor: |
6.18323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4788(3457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4788, ( :1/2), −0.997−0.0655i)
|
Particular Values
L(1) |
≈ |
1.026490598 |
L(21) |
≈ |
1.026490598 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−0.618−2.57i)T |
| 19 | 1+(1.29−4.16i)T |
good | 5 | 1−1.58iT−5T2 |
| 11 | 1+1.61T+11T2 |
| 13 | 1−3.38T+13T2 |
| 17 | 1−2.57iT−17T2 |
| 23 | 1+7.47T+23T2 |
| 29 | 1−8.71iT−29T2 |
| 31 | 1+8.06T+31T2 |
| 37 | 1+5.38iT−37T2 |
| 41 | 1−8.06T+41T2 |
| 43 | 1+5.70T+43T2 |
| 47 | 1+4.76iT−47T2 |
| 53 | 1+14.0iT−53T2 |
| 59 | 1+0.799T+59T2 |
| 61 | 1−6.73iT−61T2 |
| 67 | 1+2.05iT−67T2 |
| 71 | 1−12.0iT−71T2 |
| 73 | 1+9.30iT−73T2 |
| 79 | 1−10.7iT−79T2 |
| 83 | 1+2.94iT−83T2 |
| 89 | 1−8.37T+89T2 |
| 97 | 1+10.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.532487966313609442604740789197, −8.048621440367089008238112666359, −7.18562782552944775968411897293, −6.36016346634099301421136557927, −5.76476246758700158283968935850, −5.18384638662739013433498689293, −3.92628105030431241802483463539, −3.39859330235371063147980647975, −2.31055602034985936782372870263, −1.62239925364035530825913660853,
0.27844887143673088651115118446, 1.25168890381352421813605677205, 2.34800203479382137558233726750, 3.46189540712130906559859172605, 4.33199453649359158257995877567, 4.77206700408021423881445280411, 5.78494969188700799070515326874, 6.41743371465637730950104282349, 7.39735134761185402760823617102, 7.88778845291661389928392401598