Properties

Label 2-4788-1.1-c1-0-8
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.23·5-s + 7-s + 2·11-s − 4.47·13-s + 1.23·17-s − 19-s + 2·23-s − 3.47·25-s + 7.23·29-s + 4·31-s − 1.23·35-s + 4.47·37-s − 6.47·41-s − 10.4·43-s + 9.23·47-s + 49-s − 12.1·53-s − 2.47·55-s + 12.9·59-s + 0.472·61-s + 5.52·65-s + 4.94·67-s + 7.23·71-s + 6·73-s + 2·77-s − 16.9·79-s + 6.76·83-s + ⋯
L(s)  = 1  − 0.552·5-s + 0.377·7-s + 0.603·11-s − 1.24·13-s + 0.299·17-s − 0.229·19-s + 0.417·23-s − 0.694·25-s + 1.34·29-s + 0.718·31-s − 0.208·35-s + 0.735·37-s − 1.01·41-s − 1.59·43-s + 1.34·47-s + 0.142·49-s − 1.67·53-s − 0.333·55-s + 1.68·59-s + 0.0604·61-s + 0.685·65-s + 0.604·67-s + 0.858·71-s + 0.702·73-s + 0.227·77-s − 1.90·79-s + 0.742·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.635792368\)
\(L(\frac12)\) \(\approx\) \(1.635792368\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 + 1.23T + 5T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 4.47T + 13T^{2} \)
17 \( 1 - 1.23T + 17T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 7.23T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 4.47T + 37T^{2} \)
41 \( 1 + 6.47T + 41T^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 - 9.23T + 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 - 0.472T + 61T^{2} \)
67 \( 1 - 4.94T + 67T^{2} \)
71 \( 1 - 7.23T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 16.9T + 79T^{2} \)
83 \( 1 - 6.76T + 83T^{2} \)
89 \( 1 - 1.52T + 89T^{2} \)
97 \( 1 - 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.230543230308003743596717645668, −7.61685736823612803634141047484, −6.88209087899201275699280465783, −6.23821385509782428254031713322, −5.14304323514114182231205580808, −4.64246187342294396653448507157, −3.80244999295771040082931127484, −2.89864604317108997233748518703, −1.93521439172926010742921922986, −0.70442958664710639496682572003, 0.70442958664710639496682572003, 1.93521439172926010742921922986, 2.89864604317108997233748518703, 3.80244999295771040082931127484, 4.64246187342294396653448507157, 5.14304323514114182231205580808, 6.23821385509782428254031713322, 6.88209087899201275699280465783, 7.61685736823612803634141047484, 8.230543230308003743596717645668

Graph of the $Z$-function along the critical line