L(s) = 1 | − 1.23·5-s + 7-s + 2·11-s − 4.47·13-s + 1.23·17-s − 19-s + 2·23-s − 3.47·25-s + 7.23·29-s + 4·31-s − 1.23·35-s + 4.47·37-s − 6.47·41-s − 10.4·43-s + 9.23·47-s + 49-s − 12.1·53-s − 2.47·55-s + 12.9·59-s + 0.472·61-s + 5.52·65-s + 4.94·67-s + 7.23·71-s + 6·73-s + 2·77-s − 16.9·79-s + 6.76·83-s + ⋯ |
L(s) = 1 | − 0.552·5-s + 0.377·7-s + 0.603·11-s − 1.24·13-s + 0.299·17-s − 0.229·19-s + 0.417·23-s − 0.694·25-s + 1.34·29-s + 0.718·31-s − 0.208·35-s + 0.735·37-s − 1.01·41-s − 1.59·43-s + 1.34·47-s + 0.142·49-s − 1.67·53-s − 0.333·55-s + 1.68·59-s + 0.0604·61-s + 0.685·65-s + 0.604·67-s + 0.858·71-s + 0.702·73-s + 0.227·77-s − 1.90·79-s + 0.742·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.635792368 |
L(21) |
≈ |
1.635792368 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1+1.23T+5T2 |
| 11 | 1−2T+11T2 |
| 13 | 1+4.47T+13T2 |
| 17 | 1−1.23T+17T2 |
| 23 | 1−2T+23T2 |
| 29 | 1−7.23T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−4.47T+37T2 |
| 41 | 1+6.47T+41T2 |
| 43 | 1+10.4T+43T2 |
| 47 | 1−9.23T+47T2 |
| 53 | 1+12.1T+53T2 |
| 59 | 1−12.9T+59T2 |
| 61 | 1−0.472T+61T2 |
| 67 | 1−4.94T+67T2 |
| 71 | 1−7.23T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+16.9T+79T2 |
| 83 | 1−6.76T+83T2 |
| 89 | 1−1.52T+89T2 |
| 97 | 1−16.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.230543230308003743596717645668, −7.61685736823612803634141047484, −6.88209087899201275699280465783, −6.23821385509782428254031713322, −5.14304323514114182231205580808, −4.64246187342294396653448507157, −3.80244999295771040082931127484, −2.89864604317108997233748518703, −1.93521439172926010742921922986, −0.70442958664710639496682572003,
0.70442958664710639496682572003, 1.93521439172926010742921922986, 2.89864604317108997233748518703, 3.80244999295771040082931127484, 4.64246187342294396653448507157, 5.14304323514114182231205580808, 6.23821385509782428254031713322, 6.88209087899201275699280465783, 7.61685736823612803634141047484, 8.230543230308003743596717645668