L(s) = 1 | − 0.236·5-s − 7-s + 0.381·11-s − 5.47·13-s − 0.854·17-s + 19-s + 3.76·23-s − 4.94·25-s + 2.38·29-s + 2.85·31-s + 0.236·35-s − 3.76·37-s + 8.56·41-s − 4.47·43-s + 1.47·47-s + 49-s + 5.09·53-s − 0.0901·55-s − 11·59-s + 0.236·61-s + 1.29·65-s + 12.5·67-s + 8.23·71-s + 1.38·73-s − 0.381·77-s + 4.47·79-s + 9.56·83-s + ⋯ |
L(s) = 1 | − 0.105·5-s − 0.377·7-s + 0.115·11-s − 1.51·13-s − 0.207·17-s + 0.229·19-s + 0.784·23-s − 0.988·25-s + 0.442·29-s + 0.512·31-s + 0.0399·35-s − 0.618·37-s + 1.33·41-s − 0.681·43-s + 0.214·47-s + 0.142·49-s + 0.699·53-s − 0.0121·55-s − 1.43·59-s + 0.0302·61-s + 0.160·65-s + 1.53·67-s + 0.977·71-s + 0.161·73-s − 0.0435·77-s + 0.503·79-s + 1.04·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.404139547 |
L(21) |
≈ |
1.404139547 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 5 | 1+0.236T+5T2 |
| 11 | 1−0.381T+11T2 |
| 13 | 1+5.47T+13T2 |
| 17 | 1+0.854T+17T2 |
| 23 | 1−3.76T+23T2 |
| 29 | 1−2.38T+29T2 |
| 31 | 1−2.85T+31T2 |
| 37 | 1+3.76T+37T2 |
| 41 | 1−8.56T+41T2 |
| 43 | 1+4.47T+43T2 |
| 47 | 1−1.47T+47T2 |
| 53 | 1−5.09T+53T2 |
| 59 | 1+11T+59T2 |
| 61 | 1−0.236T+61T2 |
| 67 | 1−12.5T+67T2 |
| 71 | 1−8.23T+71T2 |
| 73 | 1−1.38T+73T2 |
| 79 | 1−4.47T+79T2 |
| 83 | 1−9.56T+83T2 |
| 89 | 1−2.29T+89T2 |
| 97 | 1−5.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.187609483925142055726272939078, −7.52566956100109919850461449398, −6.90336896389729062104301312405, −6.17973370421833969913337415050, −5.25393581638305661136394867434, −4.65537891262678610530872460445, −3.73559602616866165646140914308, −2.83456804697838287827206118048, −2.04883608797897585665717203348, −0.63304334015876680491873545576,
0.63304334015876680491873545576, 2.04883608797897585665717203348, 2.83456804697838287827206118048, 3.73559602616866165646140914308, 4.65537891262678610530872460445, 5.25393581638305661136394867434, 6.17973370421833969913337415050, 6.90336896389729062104301312405, 7.52566956100109919850461449398, 8.187609483925142055726272939078