L(s) = 1 | + 7-s − 3.46·11-s − 4·13-s − 6.92·17-s + 19-s − 3.46·23-s − 5·25-s + 3.46·29-s + 8·31-s + 2·37-s + 6.92·41-s + 8·43-s − 3.46·47-s + 49-s + 10.3·53-s + 13.8·59-s + 2·61-s + 2·67-s − 3.46·71-s + 14·73-s − 3.46·77-s + 14·79-s + 10.3·83-s − 13.8·89-s − 4·91-s + 8·97-s − 4·103-s + ⋯ |
L(s) = 1 | + 0.377·7-s − 1.04·11-s − 1.10·13-s − 1.68·17-s + 0.229·19-s − 0.722·23-s − 25-s + 0.643·29-s + 1.43·31-s + 0.328·37-s + 1.08·41-s + 1.21·43-s − 0.505·47-s + 0.142·49-s + 1.42·53-s + 1.80·59-s + 0.256·61-s + 0.244·67-s − 0.411·71-s + 1.63·73-s − 0.394·77-s + 1.57·79-s + 1.14·83-s − 1.46·89-s − 0.419·91-s + 0.812·97-s − 0.394·103-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.395034155 |
L(21) |
≈ |
1.395034155 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1−T |
good | 5 | 1+5T2 |
| 11 | 1+3.46T+11T2 |
| 13 | 1+4T+13T2 |
| 17 | 1+6.92T+17T2 |
| 23 | 1+3.46T+23T2 |
| 29 | 1−3.46T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1−6.92T+41T2 |
| 43 | 1−8T+43T2 |
| 47 | 1+3.46T+47T2 |
| 53 | 1−10.3T+53T2 |
| 59 | 1−13.8T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−2T+67T2 |
| 71 | 1+3.46T+71T2 |
| 73 | 1−14T+73T2 |
| 79 | 1−14T+79T2 |
| 83 | 1−10.3T+83T2 |
| 89 | 1+13.8T+89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.146126621577866774811944768055, −7.68605915912554346282636713151, −6.88363124973409026553181559355, −6.11596017977960070102375215482, −5.25436758350431740350857426748, −4.61315100650871195355261603975, −3.92025909385226681172064085787, −2.44080547567522048938679262169, −2.33846848866104011986554243357, −0.61990338528487705978051009426,
0.61990338528487705978051009426, 2.33846848866104011986554243357, 2.44080547567522048938679262169, 3.92025909385226681172064085787, 4.61315100650871195355261603975, 5.25436758350431740350857426748, 6.11596017977960070102375215482, 6.88363124973409026553181559355, 7.68605915912554346282636713151, 8.146126621577866774811944768055