L(s) = 1 | + 2·5-s + 7-s − 4·11-s + 4·13-s − 6·17-s + 19-s − 4·23-s − 25-s − 6·29-s + 4·31-s + 2·35-s − 10·37-s − 4·41-s − 8·43-s + 49-s − 10·53-s − 8·55-s + 4·59-s + 14·61-s + 8·65-s − 6·67-s + 6·71-s − 2·73-s − 4·77-s − 10·79-s + 4·83-s − 12·85-s + ⋯ |
L(s) = 1 | + 0.894·5-s + 0.377·7-s − 1.20·11-s + 1.10·13-s − 1.45·17-s + 0.229·19-s − 0.834·23-s − 1/5·25-s − 1.11·29-s + 0.718·31-s + 0.338·35-s − 1.64·37-s − 0.624·41-s − 1.21·43-s + 1/7·49-s − 1.37·53-s − 1.07·55-s + 0.520·59-s + 1.79·61-s + 0.992·65-s − 0.733·67-s + 0.712·71-s − 0.234·73-s − 0.455·77-s − 1.12·79-s + 0.439·83-s − 1.30·85-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1−T |
good | 5 | 1−2T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1+6T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1+4T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1+6T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1+12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.167412292899053112083531589323, −7.10637580445365728452881610550, −6.43908761746468281585509954459, −5.66190834171095963067447872745, −5.14275368814923235962222968050, −4.21195947144523985076795578238, −3.27818049362169095485162406589, −2.20595699566621536787083813145, −1.64118230998341906462975859295, 0,
1.64118230998341906462975859295, 2.20595699566621536787083813145, 3.27818049362169095485162406589, 4.21195947144523985076795578238, 5.14275368814923235962222968050, 5.66190834171095963067447872745, 6.43908761746468281585509954459, 7.10637580445365728452881610550, 8.167412292899053112083531589323