Properties

Label 2-4788-1.1-c1-0-42
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 4·11-s + 4·13-s − 6·17-s + 19-s − 4·23-s − 25-s − 6·29-s + 4·31-s + 2·35-s − 10·37-s − 4·41-s − 8·43-s + 49-s − 10·53-s − 8·55-s + 4·59-s + 14·61-s + 8·65-s − 6·67-s + 6·71-s − 2·73-s − 4·77-s − 10·79-s + 4·83-s − 12·85-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 1.20·11-s + 1.10·13-s − 1.45·17-s + 0.229·19-s − 0.834·23-s − 1/5·25-s − 1.11·29-s + 0.718·31-s + 0.338·35-s − 1.64·37-s − 0.624·41-s − 1.21·43-s + 1/7·49-s − 1.37·53-s − 1.07·55-s + 0.520·59-s + 1.79·61-s + 0.992·65-s − 0.733·67-s + 0.712·71-s − 0.234·73-s − 0.455·77-s − 1.12·79-s + 0.439·83-s − 1.30·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.167412292899053112083531589323, −7.10637580445365728452881610550, −6.43908761746468281585509954459, −5.66190834171095963067447872745, −5.14275368814923235962222968050, −4.21195947144523985076795578238, −3.27818049362169095485162406589, −2.20595699566621536787083813145, −1.64118230998341906462975859295, 0, 1.64118230998341906462975859295, 2.20595699566621536787083813145, 3.27818049362169095485162406589, 4.21195947144523985076795578238, 5.14275368814923235962222968050, 5.66190834171095963067447872745, 6.43908761746468281585509954459, 7.10637580445365728452881610550, 8.167412292899053112083531589323

Graph of the $Z$-function along the critical line