L(s) = 1 | − 2·5-s − 7-s − 6·11-s + 2·13-s + 2·17-s + 19-s + 2·23-s − 25-s − 4·29-s + 2·35-s − 2·37-s − 8·43-s − 6·47-s + 49-s + 4·53-s + 12·55-s + 2·61-s − 4·65-s + 4·67-s − 12·71-s + 6·73-s + 6·77-s + 8·79-s − 10·83-s − 4·85-s + 8·89-s − 2·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.377·7-s − 1.80·11-s + 0.554·13-s + 0.485·17-s + 0.229·19-s + 0.417·23-s − 1/5·25-s − 0.742·29-s + 0.338·35-s − 0.328·37-s − 1.21·43-s − 0.875·47-s + 1/7·49-s + 0.549·53-s + 1.61·55-s + 0.256·61-s − 0.496·65-s + 0.488·67-s − 1.42·71-s + 0.702·73-s + 0.683·77-s + 0.900·79-s − 1.09·83-s − 0.433·85-s + 0.847·89-s − 0.209·91-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9169030383 |
L(21) |
≈ |
0.9169030383 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 5 | 1+2T+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−2T+pT2 |
| 23 | 1−2T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+6T+pT2 |
| 53 | 1−4T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+10T+pT2 |
| 89 | 1−8T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.184639677331554303933704650434, −7.61588901075909735518418162462, −7.04778130859601909544589177316, −6.02260122758311729025741163435, −5.33160831109524633136613980263, −4.62328709237547491330504325182, −3.56014806445052128856172122648, −3.10537312677644226539074053260, −1.98071470066691974083222620926, −0.50684573635306972930557790284,
0.50684573635306972930557790284, 1.98071470066691974083222620926, 3.10537312677644226539074053260, 3.56014806445052128856172122648, 4.62328709237547491330504325182, 5.33160831109524633136613980263, 6.02260122758311729025741163435, 7.04778130859601909544589177316, 7.61588901075909735518418162462, 8.184639677331554303933704650434