Properties

Label 2-4788-1.1-c1-0-37
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.73·5-s − 7-s − 3.46·11-s − 4·13-s − 4.19·17-s − 19-s + 7.46·23-s + 2.46·25-s + 6.19·29-s + 4.92·31-s − 2.73·35-s − 7.46·37-s + 9.46·41-s − 3.46·43-s − 2.73·47-s + 49-s − 8.73·53-s − 9.46·55-s + 10.9·59-s − 14.3·61-s − 10.9·65-s + 1.46·67-s − 10.1·71-s − 15.8·73-s + 3.46·77-s − 13.4·79-s + 1.26·83-s + ⋯
L(s)  = 1  + 1.22·5-s − 0.377·7-s − 1.04·11-s − 1.10·13-s − 1.01·17-s − 0.229·19-s + 1.55·23-s + 0.492·25-s + 1.15·29-s + 0.885·31-s − 0.461·35-s − 1.22·37-s + 1.47·41-s − 0.528·43-s − 0.398·47-s + 0.142·49-s − 1.19·53-s − 1.27·55-s + 1.42·59-s − 1.84·61-s − 1.35·65-s + 0.178·67-s − 1.21·71-s − 1.85·73-s + 0.394·77-s − 1.51·79-s + 0.139·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 - 2.73T + 5T^{2} \)
11 \( 1 + 3.46T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 + 4.19T + 17T^{2} \)
23 \( 1 - 7.46T + 23T^{2} \)
29 \( 1 - 6.19T + 29T^{2} \)
31 \( 1 - 4.92T + 31T^{2} \)
37 \( 1 + 7.46T + 37T^{2} \)
41 \( 1 - 9.46T + 41T^{2} \)
43 \( 1 + 3.46T + 43T^{2} \)
47 \( 1 + 2.73T + 47T^{2} \)
53 \( 1 + 8.73T + 53T^{2} \)
59 \( 1 - 10.9T + 59T^{2} \)
61 \( 1 + 14.3T + 61T^{2} \)
67 \( 1 - 1.46T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 + 15.8T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 - 1.26T + 83T^{2} \)
89 \( 1 + 9.46T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.905762761133778948798963994776, −7.04712134720812364061126020026, −6.52335188093155764935448228034, −5.70424029392471525402457468158, −5.00147348262843879862010636695, −4.43207112370119232712953663037, −2.84220825316301115835751353962, −2.64715394159476842232378922552, −1.49900195174847536244542047421, 0, 1.49900195174847536244542047421, 2.64715394159476842232378922552, 2.84220825316301115835751353962, 4.43207112370119232712953663037, 5.00147348262843879862010636695, 5.70424029392471525402457468158, 6.52335188093155764935448228034, 7.04712134720812364061126020026, 7.905762761133778948798963994776

Graph of the $Z$-function along the critical line