L(s) = 1 | − 1.42·5-s − 7-s + 3.27·11-s + 3.42·13-s − 5.27·17-s − 19-s − 0.574·23-s − 2.96·25-s + 0.122·29-s + 2.12·31-s + 1.42·35-s − 3.96·37-s + 4.66·41-s − 11.9·43-s − 3.11·47-s + 49-s + 6.08·53-s − 4.66·55-s + 1.72·59-s + 12.2·61-s − 4.88·65-s − 5.27·67-s + 6.81·71-s − 11.5·73-s − 3.27·77-s + 11.0·79-s − 5.23·83-s + ⋯ |
L(s) = 1 | − 0.637·5-s − 0.377·7-s + 0.986·11-s + 0.950·13-s − 1.27·17-s − 0.229·19-s − 0.119·23-s − 0.593·25-s + 0.0227·29-s + 0.381·31-s + 0.241·35-s − 0.652·37-s + 0.728·41-s − 1.81·43-s − 0.454·47-s + 0.142·49-s + 0.836·53-s − 0.628·55-s + 0.224·59-s + 1.56·61-s − 0.605·65-s − 0.643·67-s + 0.809·71-s − 1.35·73-s − 0.372·77-s + 1.24·79-s − 0.574·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 5 | 1+1.42T+5T2 |
| 11 | 1−3.27T+11T2 |
| 13 | 1−3.42T+13T2 |
| 17 | 1+5.27T+17T2 |
| 23 | 1+0.574T+23T2 |
| 29 | 1−0.122T+29T2 |
| 31 | 1−2.12T+31T2 |
| 37 | 1+3.96T+37T2 |
| 41 | 1−4.66T+41T2 |
| 43 | 1+11.9T+43T2 |
| 47 | 1+3.11T+47T2 |
| 53 | 1−6.08T+53T2 |
| 59 | 1−1.72T+59T2 |
| 61 | 1−12.2T+61T2 |
| 67 | 1+5.27T+67T2 |
| 71 | 1−6.81T+71T2 |
| 73 | 1+11.5T+73T2 |
| 79 | 1−11.0T+79T2 |
| 83 | 1+5.23T+83T2 |
| 89 | 1−1.45T+89T2 |
| 97 | 1−17.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.082853725293927203213709871720, −7.01460571540713490223087234466, −6.58981154981396501174413316534, −5.89121501983364901012169717262, −4.84329458615620407145141925152, −3.95715600855877940973954997520, −3.61417168403294593911068923119, −2.40920811542236548713162993931, −1.32804388299010437186613276852, 0,
1.32804388299010437186613276852, 2.40920811542236548713162993931, 3.61417168403294593911068923119, 3.95715600855877940973954997520, 4.84329458615620407145141925152, 5.89121501983364901012169717262, 6.58981154981396501174413316534, 7.01460571540713490223087234466, 8.082853725293927203213709871720