Properties

Label 2-4788-1.1-c1-0-32
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.42·5-s − 7-s + 3.27·11-s + 3.42·13-s − 5.27·17-s − 19-s − 0.574·23-s − 2.96·25-s + 0.122·29-s + 2.12·31-s + 1.42·35-s − 3.96·37-s + 4.66·41-s − 11.9·43-s − 3.11·47-s + 49-s + 6.08·53-s − 4.66·55-s + 1.72·59-s + 12.2·61-s − 4.88·65-s − 5.27·67-s + 6.81·71-s − 11.5·73-s − 3.27·77-s + 11.0·79-s − 5.23·83-s + ⋯
L(s)  = 1  − 0.637·5-s − 0.377·7-s + 0.986·11-s + 0.950·13-s − 1.27·17-s − 0.229·19-s − 0.119·23-s − 0.593·25-s + 0.0227·29-s + 0.381·31-s + 0.241·35-s − 0.652·37-s + 0.728·41-s − 1.81·43-s − 0.454·47-s + 0.142·49-s + 0.836·53-s − 0.628·55-s + 0.224·59-s + 1.56·61-s − 0.605·65-s − 0.643·67-s + 0.809·71-s − 1.35·73-s − 0.372·77-s + 1.24·79-s − 0.574·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + 1.42T + 5T^{2} \)
11 \( 1 - 3.27T + 11T^{2} \)
13 \( 1 - 3.42T + 13T^{2} \)
17 \( 1 + 5.27T + 17T^{2} \)
23 \( 1 + 0.574T + 23T^{2} \)
29 \( 1 - 0.122T + 29T^{2} \)
31 \( 1 - 2.12T + 31T^{2} \)
37 \( 1 + 3.96T + 37T^{2} \)
41 \( 1 - 4.66T + 41T^{2} \)
43 \( 1 + 11.9T + 43T^{2} \)
47 \( 1 + 3.11T + 47T^{2} \)
53 \( 1 - 6.08T + 53T^{2} \)
59 \( 1 - 1.72T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 + 5.27T + 67T^{2} \)
71 \( 1 - 6.81T + 71T^{2} \)
73 \( 1 + 11.5T + 73T^{2} \)
79 \( 1 - 11.0T + 79T^{2} \)
83 \( 1 + 5.23T + 83T^{2} \)
89 \( 1 - 1.45T + 89T^{2} \)
97 \( 1 - 17.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.082853725293927203213709871720, −7.01460571540713490223087234466, −6.58981154981396501174413316534, −5.89121501983364901012169717262, −4.84329458615620407145141925152, −3.95715600855877940973954997520, −3.61417168403294593911068923119, −2.40920811542236548713162993931, −1.32804388299010437186613276852, 0, 1.32804388299010437186613276852, 2.40920811542236548713162993931, 3.61417168403294593911068923119, 3.95715600855877940973954997520, 4.84329458615620407145141925152, 5.89121501983364901012169717262, 6.58981154981396501174413316534, 7.01460571540713490223087234466, 8.082853725293927203213709871720

Graph of the $Z$-function along the critical line