Properties

Label 2-4788-1.1-c1-0-30
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 7-s + 3.79·11-s − 13-s − 3.79·17-s + 19-s − 4.58·23-s + 4·25-s − 3.79·29-s + 7.37·31-s − 3·35-s + 5·37-s + 3.79·41-s + 2·43-s − 10.5·47-s + 49-s + 8.37·53-s − 11.3·55-s − 12.1·59-s − 61-s + 3·65-s − 9.37·67-s + 12.1·71-s + 16.3·73-s + 3.79·77-s − 10·79-s − 14.3·83-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.377·7-s + 1.14·11-s − 0.277·13-s − 0.919·17-s + 0.229·19-s − 0.955·23-s + 0.800·25-s − 0.704·29-s + 1.32·31-s − 0.507·35-s + 0.821·37-s + 0.592·41-s + 0.304·43-s − 1.54·47-s + 0.142·49-s + 1.15·53-s − 1.53·55-s − 1.58·59-s − 0.128·61-s + 0.372·65-s − 1.14·67-s + 1.44·71-s + 1.91·73-s + 0.432·77-s − 1.12·79-s − 1.57·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 + 3T + 5T^{2} \)
11 \( 1 - 3.79T + 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 + 3.79T + 17T^{2} \)
23 \( 1 + 4.58T + 23T^{2} \)
29 \( 1 + 3.79T + 29T^{2} \)
31 \( 1 - 7.37T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 - 3.79T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 10.5T + 47T^{2} \)
53 \( 1 - 8.37T + 53T^{2} \)
59 \( 1 + 12.1T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 + 9.37T + 67T^{2} \)
71 \( 1 - 12.1T + 71T^{2} \)
73 \( 1 - 16.3T + 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 + 14.3T + 83T^{2} \)
89 \( 1 + 7.58T + 89T^{2} \)
97 \( 1 + 7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.019719056045307954021325888623, −7.25314307276747735944767511874, −6.59998835000921810157139539036, −5.81301493208881776699562282671, −4.62729378536117130988037843585, −4.23876214820757577371486467760, −3.52317966597678152123509557470, −2.44794237707911530887908187109, −1.26796192541073129789232848734, 0, 1.26796192541073129789232848734, 2.44794237707911530887908187109, 3.52317966597678152123509557470, 4.23876214820757577371486467760, 4.62729378536117130988037843585, 5.81301493208881776699562282671, 6.59998835000921810157139539036, 7.25314307276747735944767511874, 8.019719056045307954021325888623

Graph of the $Z$-function along the critical line