L(s) = 1 | + 3.82·5-s + 7-s + 5.86·11-s − 0.605·13-s − 2.04·17-s + 19-s + 5.86·23-s + 9.60·25-s − 2.04·29-s − 6.60·31-s + 3.82·35-s + 2·37-s + 5.86·41-s − 6.60·43-s + 2.04·47-s + 49-s + 3.82·53-s + 22.4·55-s + 11.7·59-s + 2·61-s − 2.31·65-s − 9.21·67-s − 15.5·71-s + 7.21·73-s + 5.86·77-s − 4·79-s − 3.82·83-s + ⋯ |
L(s) = 1 | + 1.70·5-s + 0.377·7-s + 1.76·11-s − 0.167·13-s − 0.496·17-s + 0.229·19-s + 1.22·23-s + 1.92·25-s − 0.379·29-s − 1.18·31-s + 0.645·35-s + 0.328·37-s + 0.916·41-s − 1.00·43-s + 0.298·47-s + 0.142·49-s + 0.524·53-s + 3.02·55-s + 1.52·59-s + 0.256·61-s − 0.287·65-s − 1.12·67-s − 1.84·71-s + 0.843·73-s + 0.668·77-s − 0.450·79-s − 0.419·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.409825661 |
L(21) |
≈ |
3.409825661 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1−T |
good | 5 | 1−3.82T+5T2 |
| 11 | 1−5.86T+11T2 |
| 13 | 1+0.605T+13T2 |
| 17 | 1+2.04T+17T2 |
| 23 | 1−5.86T+23T2 |
| 29 | 1+2.04T+29T2 |
| 31 | 1+6.60T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1−5.86T+41T2 |
| 43 | 1+6.60T+43T2 |
| 47 | 1−2.04T+47T2 |
| 53 | 1−3.82T+53T2 |
| 59 | 1−11.7T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1+9.21T+67T2 |
| 71 | 1+15.5T+71T2 |
| 73 | 1−7.21T+73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1+3.82T+83T2 |
| 89 | 1+9.41T+89T2 |
| 97 | 1+3.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.635022662518162387235942433003, −7.28410495483941561353502992561, −6.82128666934031340362514529596, −6.05422123082313123851063337317, −5.49020893736721232574616467332, −4.67589074170689324771630098510, −3.78260056896974884122769912922, −2.69730918150489330677421750664, −1.79845129414368275112248748901, −1.14812882339191650853659708606,
1.14812882339191650853659708606, 1.79845129414368275112248748901, 2.69730918150489330677421750664, 3.78260056896974884122769912922, 4.67589074170689324771630098510, 5.49020893736721232574616467332, 6.05422123082313123851063337317, 6.82128666934031340362514529596, 7.28410495483941561353502992561, 8.635022662518162387235942433003