L(s) = 1 | − 3.43·5-s − 7-s − 2.61·11-s + 5.43·13-s + 0.611·17-s − 19-s + 1.43·23-s + 6.79·25-s − 1.74·29-s + 0.255·31-s + 3.43·35-s + 5.79·37-s − 8.96·41-s + 7.58·43-s + 10.6·47-s + 49-s − 5.53·53-s + 8.96·55-s − 4.30·59-s − 1.27·61-s − 18.6·65-s + 0.611·67-s + 1.07·71-s − 11.6·73-s + 2.61·77-s − 12.4·79-s + 10.4·83-s + ⋯ |
L(s) = 1 | − 1.53·5-s − 0.377·7-s − 0.787·11-s + 1.50·13-s + 0.148·17-s − 0.229·19-s + 0.298·23-s + 1.35·25-s − 0.323·29-s + 0.0458·31-s + 0.580·35-s + 0.951·37-s − 1.40·41-s + 1.15·43-s + 1.55·47-s + 0.142·49-s − 0.760·53-s + 1.20·55-s − 0.559·59-s − 0.163·61-s − 2.31·65-s + 0.0747·67-s + 0.127·71-s − 1.36·73-s + 0.297·77-s − 1.40·79-s + 1.14·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 5 | 1+3.43T+5T2 |
| 11 | 1+2.61T+11T2 |
| 13 | 1−5.43T+13T2 |
| 17 | 1−0.611T+17T2 |
| 23 | 1−1.43T+23T2 |
| 29 | 1+1.74T+29T2 |
| 31 | 1−0.255T+31T2 |
| 37 | 1−5.79T+37T2 |
| 41 | 1+8.96T+41T2 |
| 43 | 1−7.58T+43T2 |
| 47 | 1−10.6T+47T2 |
| 53 | 1+5.53T+53T2 |
| 59 | 1+4.30T+59T2 |
| 61 | 1+1.27T+61T2 |
| 67 | 1−0.611T+67T2 |
| 71 | 1−1.07T+71T2 |
| 73 | 1+11.6T+73T2 |
| 79 | 1+12.4T+79T2 |
| 83 | 1−10.4T+83T2 |
| 89 | 1−13.2T+89T2 |
| 97 | 1+7.88T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80233357009246873797216254831, −7.45709637976400741588544457565, −6.48949630681350100625244847123, −5.81180814346290804813736336848, −4.83133918485081641807896272980, −4.01055706408249825884400235926, −3.48509581821501164855341846140, −2.63091160861477335470633531621, −1.14207886106608566229236838372, 0,
1.14207886106608566229236838372, 2.63091160861477335470633531621, 3.48509581821501164855341846140, 4.01055706408249825884400235926, 4.83133918485081641807896272980, 5.81180814346290804813736336848, 6.48949630681350100625244847123, 7.45709637976400741588544457565, 7.80233357009246873797216254831