Properties

Label 2-4788-1.1-c1-0-20
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 5.09·11-s + 2.23·13-s + 5.38·17-s − 19-s − 4.70·23-s − 4·25-s + 5.85·29-s − 4.61·31-s + 35-s + 6.70·37-s + 11.0·41-s − 0.472·43-s + 8.70·47-s + 49-s − 1.32·53-s + 5.09·55-s − 2.70·59-s − 3.47·61-s + 2.23·65-s + 9.09·67-s − 11.1·71-s − 12.0·73-s + 5.09·77-s + 10.9·79-s − 12.3·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.53·11-s + 0.620·13-s + 1.30·17-s − 0.229·19-s − 0.981·23-s − 0.800·25-s + 1.08·29-s − 0.829·31-s + 0.169·35-s + 1.10·37-s + 1.73·41-s − 0.0720·43-s + 1.27·47-s + 0.142·49-s − 0.182·53-s + 0.686·55-s − 0.352·59-s − 0.444·61-s + 0.277·65-s + 1.11·67-s − 1.32·71-s − 1.41·73-s + 0.580·77-s + 1.23·79-s − 1.35·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.755382243\)
\(L(\frac12)\) \(\approx\) \(2.755382243\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - T + 5T^{2} \)
11 \( 1 - 5.09T + 11T^{2} \)
13 \( 1 - 2.23T + 13T^{2} \)
17 \( 1 - 5.38T + 17T^{2} \)
23 \( 1 + 4.70T + 23T^{2} \)
29 \( 1 - 5.85T + 29T^{2} \)
31 \( 1 + 4.61T + 31T^{2} \)
37 \( 1 - 6.70T + 37T^{2} \)
41 \( 1 - 11.0T + 41T^{2} \)
43 \( 1 + 0.472T + 43T^{2} \)
47 \( 1 - 8.70T + 47T^{2} \)
53 \( 1 + 1.32T + 53T^{2} \)
59 \( 1 + 2.70T + 59T^{2} \)
61 \( 1 + 3.47T + 61T^{2} \)
67 \( 1 - 9.09T + 67T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 + 12.0T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 + 12.3T + 83T^{2} \)
89 \( 1 + 10.1T + 89T^{2} \)
97 \( 1 + 4.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.236908792790018649354967695043, −7.64857668808539261312923307109, −6.77011546144461102915573521675, −5.92320012637521954776406096801, −5.68974078030059396919080935511, −4.32098599213049420890103892891, −3.95472121609748790896954782595, −2.86869788755854741994298255701, −1.75137314821791586861668175608, −1.00784907577002794754355377683, 1.00784907577002794754355377683, 1.75137314821791586861668175608, 2.86869788755854741994298255701, 3.95472121609748790896954782595, 4.32098599213049420890103892891, 5.68974078030059396919080935511, 5.92320012637521954776406096801, 6.77011546144461102915573521675, 7.64857668808539261312923307109, 8.236908792790018649354967695043

Graph of the $Z$-function along the critical line